Suppr超能文献

用于临床贝叶斯网络开发的医学成语。

Medical idioms for clinical Bayesian network development.

机构信息

Risk and Information Management Research Group, School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK.

Risk and Information Management Research Group, School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK.

出版信息

J Biomed Inform. 2020 Aug;108:103495. doi: 10.1016/j.jbi.2020.103495. Epub 2020 Jun 30.

Abstract

Bayesian Networks (BNs) are graphical probabilistic models that have proven popular in medical applications. While numerous medical BNs have been published, most are presented fait accompli without explanation of how the network structure was developed or justification of why it represents the correct structure for the given medical application. This means that the process of building medical BNs from experts is typically ad hoc and offers little opportunity for methodological improvement. This paper proposes generally applicable and reusable medical reasoning patterns to aid those developing medical BNs. The proposed method complements and extends the idiom-based approach introduced by Neil, Fenton, and Nielsen in 2000. We propose instances of their generic idioms that are specific to medical BNs. We refer to the proposed medical reasoning patterns as medical idioms. In addition, we extend the use of idioms to represent interventional and counterfactual reasoning. We believe that the proposed medical idioms are logical reasoning patterns that can be combined, reused and applied generically to help develop medical BNs. All proposed medical idioms have been illustrated using medical examples on coronary artery disease. The method has also been applied to other ongoing BNs being developed with medical experts. Finally, we show that applying the proposed medical idioms to published BN models results in models with a clearer structure.

摘要

贝叶斯网络(BNs)是一种图形概率模型,已被证明在医学应用中非常受欢迎。虽然已经发表了许多医学 BNs,但大多数都是既成事实,没有解释网络结构是如何开发的,也没有证明它为何代表给定医学应用的正确结构。这意味着从专家那里构建医学 BNs 的过程通常是特定的,几乎没有机会进行方法上的改进。本文提出了通用且可重复使用的医学推理模式,以帮助那些开发医学 BNs 的人。所提出的方法补充和扩展了 Neil、Fenton 和 Nielsen 在 2000 年引入的基于习惯用法的方法。我们提出了针对医学 BNs 的特定的通用习惯用法实例。我们将提出的医学推理模式称为医学习惯用法。此外,我们扩展了习惯用法的使用范围,以表示干预和反事实推理。我们认为,所提出的医学习惯用法是逻辑推理模式,可以组合、重用并通用地应用于帮助开发医学 BNs。所有提出的医学习惯用法都使用冠状动脉疾病的医学示例进行了说明。该方法还应用于与医学专家共同开发的其他正在进行的 BNs。最后,我们表明,将所提出的医学习惯用法应用于已发布的 BN 模型会导致模型结构更加清晰。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验