Suppr超能文献

C 端和第三个细胞质环协同激活小鼠黑视蛋白光转导。

The C-Terminus and Third Cytoplasmic Loop Cooperatively Activate Mouse Melanopsin Phototransduction.

作者信息

Valdez-Lopez Juan C, Petr Stephen T, Donohue Matthew P, Bailey Robin J, Gebreeziabher Meheret, Cameron Evan G, Wolf Julia B, Szalai Veronika A, Robinson Phyllis R

机构信息

Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland.

Center for Nanoscale and Technology, National Institutes of Standards and Technology, Gaithersburg, Maryland; Maryland NanoCenter, University of Maryland College Park, College Park, Maryland.

出版信息

Biophys J. 2020 Jul 21;119(2):389-401. doi: 10.1016/j.bpj.2020.06.013. Epub 2020 Jun 23.

Abstract

Melanopsin, an atypical vertebrate visual pigment, mediates non-image-forming light responses including circadian photoentrainment and pupillary light reflexes and contrast detection for image formation. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells are characterized by sluggish activation and deactivation of their light responses. The molecular determinants of mouse melanopsin's deactivation have been characterized (i.e., C-terminal phosphorylation and β-arrestin binding), but a detailed analysis of melanopsin's activation is lacking. We propose that an extended third cytoplasmic loop is adjacent to the proximal C-terminal region of mouse melanopsin in the inactive conformation, which is stabilized by the ionic interaction of these two regions. This model is supported by site-directed spin labeling and electron paramagnetic resonance spectroscopy of melanopsin, the results of which suggests a high degree of steric freedom at the third cytoplasmic loop, which is increased upon C-terminus truncation, supporting the idea that these two regions are close in three-dimensional space in wild-type melanopsin. To test for a functionally critical C-terminal conformation, calcium imaging of melanopsin mutants including a proximal C-terminus truncation (at residue 365) and proline mutation of this proximal region (H377P, L380P, Y382P) delayed melanopsin's activation rate. Mutation of all potential phosphorylation sites, including a highly conserved tyrosine residue (Y382), into alanines also delayed the activation rate. A comparison of mouse melanopsin with armadillo melanopsin-which has substitutions of various potential phosphorylation sites and a substitution of the conserved tyrosine-indicates that substitution of these potential phosphorylation sites and the tyrosine residue result in dramatically slower activation kinetics, a finding that also supports the role of phosphorylation in signaling activation. We therefore propose that melanopsin's C-terminus is proximal to intracellular loop 3, and C-terminal phosphorylation permits the ionic interaction between these two regions, thus forming a stable structural conformation that is critical for initiating G-protein signaling.

摘要

黑视蛋白是一种非典型的脊椎动物视觉色素,介导非成像光反应,包括昼夜节律光调节、瞳孔光反射以及成像的对比度检测。表达黑视蛋白的内在光敏视网膜神经节细胞的特点是其光反应的激活和失活缓慢。小鼠黑视蛋白失活的分子决定因素已得到表征(即C末端磷酸化和β-抑制蛋白结合),但缺乏对黑视蛋白激活的详细分析。我们提出,在非活性构象中,一个延伸的第三细胞质环与小鼠黑视蛋白的近端C末端区域相邻,这两个区域通过离子相互作用得以稳定。黑视蛋白的定点自旋标记和电子顺磁共振光谱支持了该模型,其结果表明第三细胞质环具有高度的空间自由度,在C末端截短后增加,支持了这两个区域在野生型黑视蛋白的三维空间中接近的观点。为了测试功能关键的C末端构象,对包括近端C末端截短(在第365位残基处)和该近端区域的脯氨酸突变(H377P、L380P、Y382P)的黑视蛋白突变体进行钙成像,延迟了黑视蛋白的激活速率。将所有潜在磷酸化位点,包括一个高度保守的酪氨酸残基(Y382)突变为丙氨酸,也延迟了激活速率。将小鼠黑视蛋白与犰狳黑视蛋白进行比较(犰狳黑视蛋白具有各种潜在磷酸化位点的替代以及保守酪氨酸的替代)表明,这些潜在磷酸化位点和酪氨酸残基的替代导致激活动力学显著减慢,这一发现也支持了磷酸化在信号激活中的作用。因此,我们提出黑视蛋白的C末端靠近细胞内环3,C末端磷酸化允许这两个区域之间的离子相互作用,从而形成一种稳定的结构构象,这对于启动G蛋白信号传导至关重要。

相似文献

1
The C-Terminus and Third Cytoplasmic Loop Cooperatively Activate Mouse Melanopsin Phototransduction.
Biophys J. 2020 Jul 21;119(2):389-401. doi: 10.1016/j.bpj.2020.06.013. Epub 2020 Jun 23.
3
C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2741-2746. doi: 10.1073/pnas.1611893114. Epub 2017 Feb 21.
4
Light-dependent phosphorylation of the carboxy tail of mouse melanopsin.
Cell Mol Life Sci. 2012 May;69(9):1551-62. doi: 10.1007/s00018-011-0891-3. Epub 2011 Dec 13.
5
β-Arrestin-dependent deactivation of mouse melanopsin.
PLoS One. 2014 Nov 17;9(11):e113138. doi: 10.1371/journal.pone.0113138. eCollection 2014.
8
Melanopsin-Encoded Response Properties of Intrinsically Photosensitive Retinal Ganglion Cells.
Neuron. 2016 Jun 1;90(5):1016-27. doi: 10.1016/j.neuron.2016.04.016. Epub 2016 May 12.
10
Melanopsin Phototransduction Is Repurposed by ipRGC Subtypes to Shape the Function of Distinct Visual Circuits.
Neuron. 2018 Aug 22;99(4):754-767.e4. doi: 10.1016/j.neuron.2018.06.032. Epub 2018 Jul 12.

引用本文的文献

1
Recent advances in biological rhythm and non-visual photoreception: Report for the session 10 at the 19th International Conference on Retinal Proteins.
Biophys Physicobiol. 2023 Feb 21;20(Supplemental):e201013. doi: 10.2142/biophysico.bppb-v20.s013. eCollection 2023 Mar 21.
2
Functional optimization of light-activatable Opto-GPCRs: Illuminating the importance of the proximal C-terminus in G-protein specificity.
Front Cell Dev Biol. 2023 Mar 1;11:1053022. doi: 10.3389/fcell.2023.1053022. eCollection 2023.
3
Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering.
Front Chem. 2022 Jun 22;10:879609. doi: 10.3389/fchem.2022.879609. eCollection 2022.
4
Divergent G-protein selectivity across melanopsins from mice and humans.
J Cell Sci. 2022 Mar 15;135(6). doi: 10.1242/jcs.258474. Epub 2022 Mar 21.
5
Melanopsin phototransduction: beyond canonical cascades.
J Exp Biol. 2021 Dec 1;224(23). doi: 10.1242/jeb.226522. Epub 2021 Nov 29.

本文引用的文献

2
Structures of the Rhodopsin-Transducin Complex: Insights into G-Protein Activation.
Mol Cell. 2019 Aug 22;75(4):781-790.e3. doi: 10.1016/j.molcel.2019.06.007. Epub 2019 Jul 9.
4
Crystal structure of jumping spider rhodopsin-1 as a light sensitive GPCR.
Proc Natl Acad Sci U S A. 2019 Jul 16;116(29):14547-14556. doi: 10.1073/pnas.1902192116. Epub 2019 Jun 27.
5
Illuminating G-Protein-Coupling Selectivity of GPCRs.
Cell. 2019 Jun 13;177(7):1933-1947.e25. doi: 10.1016/j.cell.2019.04.044. Epub 2019 May 31.
6
Variable G protein determinants of GPCR coupling selectivity.
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):12054-12059. doi: 10.1073/pnas.1905993116. Epub 2019 May 29.
8
The M6 cell: A small-field bistratified photosensitive retinal ganglion cell.
J Comp Neurol. 2019 Jan 1;527(1):297-311. doi: 10.1002/cne.24556. Epub 2018 Nov 11.
9
Cyclic-Nucleotide- and HCN-Channel-Mediated Phototransduction in Intrinsically Photosensitive Retinal Ganglion Cells.
Cell. 2018 Oct 18;175(3):652-664.e12. doi: 10.1016/j.cell.2018.08.055. Epub 2018 Sep 27.
10
Melanopsin Phototransduction Is Repurposed by ipRGC Subtypes to Shape the Function of Distinct Visual Circuits.
Neuron. 2018 Aug 22;99(4):754-767.e4. doi: 10.1016/j.neuron.2018.06.032. Epub 2018 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验