Suppr超能文献

验证一种用于危重症患者的电临床时间依赖性风险分层(TERSE)的算法。

Validation of an algorithm of time-dependent electro-clinical risk stratification for electrographic seizures (TERSE) in critically ill patients.

机构信息

Department of Neurology, Université Libre de Bruxelles - Hôpital Erasme, Bruxelles, Belgium; Department of Neurology, CHU de Conakry, Conakry, Guinea.

Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Neurology and Comprehensive Epilepsy Center, Yale University, New Haven, CT, USA.

出版信息

Clin Neurophysiol. 2020 Aug;131(8):1956-1961. doi: 10.1016/j.clinph.2020.05.031. Epub 2020 Jun 23.

Abstract

OBJECTIVE

The clinical implementation of continuous electroencephalography (CEEG) monitoring in critically ill patients is hampered by the substantial burden of work that it entails for clinical neurophysiologists. Solutions that might reduce this burden, including by shortening the duration of EEG to be recorded, would help its widespread adoption. Our aim was to validate a recently described algorithm of time-dependent electro-clinical risk stratification for electrographic seizure (ESz) (TERSE) based on simple clinical and EEG features.

METHODS

We retrospectively reviewed the medical records and EEG recordings of consecutive patients undergoing CEEG between October 1, 2015 and September, 30 2016 and assessed the sensitivity of TERSE for seizure detection, as well as the reduction in EEG time needed to be reviewed.

RESULTS

In a cohort of 407 patients and compared to full CEEG review, the model allowed the detection of 95% of patients with ESz and 97% of those with electrographic status epilepticus. The amount of CEEG to be recorded to detect ESz was reduced by two-thirds, compared to the duration of CEEG taht was actually recorded.

CONCLUSIONS

TERSE allowed accurate time-dependent ESz risk stratification with a high sensitivity for ESz detection, which could substantially reduce the amount of CEEG to be recorded and reviewed, if applied prospectively in clinical practice.

SIGNIFICANCE

Time-dependent electro-clinical risk stratification, such as TERSE, could allow more efficient practice of CEEG and its more widespread adoption. Future studies should aim to improve risk stratification in the subgroup of patients with acute brain injury and absence of clinical seizures.

摘要

目的

连续脑电图(CEEG)监测在危重病患者中的临床实施受到临床神经生理学家所需的大量工作负担的阻碍。可能减轻这种负担的解决方案,包括缩短要记录的脑电图的持续时间,将有助于其广泛采用。我们的目的是验证最近描述的基于简单临床和脑电图特征的电临床风险分层算法(TERSE),用于电描记癫痫发作(ESz)。

方法

我们回顾性地审查了 2015 年 10 月 1 日至 2016 年 9 月 30 日期间连续进行 CEEG 的连续患者的病历和脑电图记录,并评估了 TERSE 对癫痫发作检测的敏感性,以及需要审查的脑电图时间减少。

结果

在 407 例患者队列中,与全面的 CEEG 检查相比,该模型允许检测到 95%的 ESz 患者和 97%的电描记癫痫持续状态患者。与实际记录的 CEEG 持续时间相比,记录 ESz 的 CEEG 量减少了三分之二。

结论

TERSE 允许进行准确的时间依赖性 ESz 风险分层,对 ESz 检测具有很高的敏感性,如果在临床实践中前瞻性应用,则可以大大减少要记录和审查的 CEEG 量。

意义

时间依赖性电临床风险分层,如 TERSE,可使 CEEG 的实践更有效,并更广泛地采用。未来的研究应旨在改善急性脑损伤和无临床癫痫发作患者亚组的风险分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验