Yang Amy, Arndt Daniel H, Berg Robert A, Carpenter Jessica L, Chapman Kevin E, Dlugos Dennis J, Gallentine William B, Giza Christopher C, Goldstein Joshua L, Hahn Cecil D, Lerner Jason T, Loddenkemper Tobias, Matsumoto Joyce H, Nash Kendall B, Payne Eric T, Sánchez Fernández Iván, Shults Justine, Topjian Alexis A, Williams Korwyn, Wusthoff Courtney J, Abend Nicholas S
Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at The University of Pennsylvania, United States.
Departments of Pediatrics and Neurology, Beaumont Children's Hospital and Oakland University William Beaumont School of Medicine, Royal Oak, MI, United States.
Seizure. 2015 Feb;25:104-11. doi: 10.1016/j.seizure.2014.09.013. Epub 2014 Oct 5.
Electrographic seizures are common in encephalopathic critically ill children, but identification requires continuous EEG monitoring (CEEG). Development of a seizure prediction model would enable more efficient use of limited CEEG resources. We aimed to develop and validate a seizure prediction model for use among encephalopathic critically ill children.
We developed a seizure prediction model using a retrospectively acquired multi-center database of children with acute encephalopathy without an epilepsy diagnosis, who underwent clinically indicated CEEG. We performed model validation using a separate prospectively acquired single center database. Predictor variables were chosen to be readily available to clinicians prior to the onset of CEEG and included: age, etiology category, clinical seizures prior to CEEG, initial EEG background category, and inter-ictal discharge category.
The model has fair to good discrimination ability and overall performance. At the optimal cut-off point in the validation dataset, the model has a sensitivity of 59% and a specificity of 81%. Varied cut-off points could be chosen to optimize sensitivity or specificity depending on available CEEG resources.
Despite inherent variability between centers, a model developed using multi-center CEEG data and few readily available variables could guide the use of limited CEEG resources when applied at a single center. Depending on CEEG resources, centers could choose lower cut-off points to maximize identification of all patients with seizures (but with more patients monitored) or higher cut-off points to reduce resource utilization by reducing monitoring of lower risk patients (but with failure to identify some patients with seizures).
脑电图癫痫发作在患有脑病的危重症儿童中很常见,但需要通过持续脑电图监测(CEEG)来识别。癫痫发作预测模型的开发将使有限的CEEG资源得到更有效的利用。我们旨在开发并验证一种用于患有脑病的危重症儿童的癫痫发作预测模型。
我们使用一个回顾性获取的多中心数据库开发了一种癫痫发作预测模型,该数据库包含未诊断为癫痫的急性脑病儿童,这些儿童接受了临床指征的CEEG检查。我们使用一个单独的前瞻性获取的单中心数据库进行模型验证。预测变量被选择为临床医生在CEEG检查开始前即可轻易获得的变量,包括:年龄、病因类别、CEEG检查前的临床癫痫发作、初始脑电图背景类别以及发作间期放电类别。
该模型具有中等至良好的辨别能力和整体性能。在验证数据集中的最佳临界点,该模型的敏感性为59%,特异性为81%。可以根据可用的CEEG资源选择不同的临界点来优化敏感性或特异性。
尽管各中心之间存在内在差异,但使用多中心CEEG数据和少量易于获得的变量开发的模型,在应用于单中心时可指导有限CEEG资源的使用。根据CEEG资源情况,各中心可以选择较低的临界点以最大限度地识别所有癫痫发作患者(但监测的患者更多),或者选择较高的临界点以通过减少对低风险患者的监测来降低资源利用(但会有一些癫痫发作患者未被识别)。