Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, Gdansk, Poland.
Microbiol Res. 2020 Nov;240:126529. doi: 10.1016/j.micres.2020.126529. Epub 2020 Jun 21.
Toxin-antitoxin (TA) systems are ubiquitous in bacteria and on numerous occasions have been postulated to play a role in virulence of pathogens. Some Staphylococcus aureus strains carry a plasmid, which encodes the highly toxic PemIKSa TA system involved in maintenance of the plasmid but also implicated in modulation of gene expression. Here we showed that pemIKSa1-Sp TA system, homologous to the plasmid-encoded PemIKSa, is present in virtually each chromosome of S. pseudintermedius strain, however exhibits sequence heterogeneity. This results in two length variants of the PemKSa1-Sp toxin. The shorter (96 aa), C-terminally truncated toxin is enzymatically inactive, whereas the full length (112 aa) variant is an RNase, though nontoxic to the host cells. The lack of toxicity of the active PemKSa-Sp2 toxin is explained by increased substrate specificity. The pemISa1-Sp antitoxin gene seems pseudogenized, however, the whole pemIKSa1-Sp system is transcriptionally active. When production of N-terminally truncated antitoxins using alternative start codons is assumed, there are five possible length variants. Here we showed that even substantially truncated antitoxins are able to interact with PemKSa-Sp2 toxin and inhibit its RNase activity. Moreover, the antitoxins can rescue bacterial cells from toxic effects of overexpression of plasmid-encoded PemKSa toxin. Collectively, our data indicates that, contrary to the toxic plasmid-encoded PemIKSa TA system, location of pemIKSa1-Sp in the chromosome of S. pseudintermedius results in the loss of its toxicity. Interestingly, the retained RNase activity of PemKSa1-Sp2 toxin and functionality of the putative, N-terminally truncated antitoxins suggest the existence of evolutionary pressure for alleviation/mitigation of the toxin's toxicity and retention of the inhibitory activity of the antitoxin, respectively.
毒素-抗毒素 (TA) 系统在细菌中普遍存在,并且在许多情况下被推测在病原体的毒力中发挥作用。一些金黄色葡萄球菌菌株携带一种质粒,该质粒编码高度毒性的 PemIKSa TA 系统,该系统参与质粒的维持,但也与基因表达的调节有关。在这里,我们表明,与质粒编码的 PemIKSa 同源的 pemIKSa1-Sp TA 系统几乎存在于 S. pseudintermedius 菌株的每条染色体中,但存在序列异质性。这导致 PemKSa1-Sp 毒素有两种长度变体。较短的(96 个氨基酸),C 端截断的毒素没有酶活性,而全长(112 个氨基酸)变体是一种核糖核酸酶,尽管对宿主细胞没有毒性。活性 PemKSa-Sp2 毒素缺乏毒性是由于底物特异性增加所致。pemISa1-Sp 抗毒素基因似乎已失活,但整个 pemIKSa1-Sp 系统具有转录活性。假设使用替代起始密码子产生 N 端截断的抗毒素,那么就有五种可能的长度变体。在这里,我们表明,即使是大大截断的抗毒素也能够与 PemKSa-Sp2 毒素相互作用并抑制其核糖核酸酶活性。此外,抗毒素可以使细菌细胞免受过表达质粒编码的 PemKSa 毒素的毒性影响。总的来说,我们的数据表明,与毒性质粒编码的 PemIKSa TA 系统相反,pemIKSa1-Sp 在 S. pseudintermedius 染色体中的位置导致其毒性丧失。有趣的是,PemKSa1-Sp2 毒素保留的核糖核酸酶活性和假定的、N 端截断的抗毒素的功能分别表明存在减轻/缓解毒素毒性和保留抗毒素抑制活性的进化压力。