Laboratorio de Microbiología, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
Laboratorio de Diferenciación Celular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
Mol Genet Genomics. 2023 Mar;298(2):455-472. doi: 10.1007/s00438-022-01988-x. Epub 2023 Jan 5.
The PumAB type-II toxin-antitoxin (TA) system is encoded by pumAB genes that are organized into an operon. This system is encoded by the pUM505 plasmid, isolated from a Pseudomonas aeruginosa clinical strain. The pumA gene encodes a putative RelE toxin protein (toxic component), whereas the pumB gene encodes a putative HTH antitoxin protein. The expression of the PumAB system in Escherichia coli confers plasmid stability. In addition, PumA toxin overexpression in P. aeruginosa possesses the capability to increase bacterial virulence, an effect that is neutralized by the PumB antitoxin. The aim of this study was to establish the mechanism of regulation of the PumAB toxin-antitoxin system from pUM505. By an in silico analysis of the putative regulatory elements, we identified two putative internal promoters, P and P (in addition to the already reported P), located upstream of pumB. By RT-qPCR assays, we determined that the pumAB genes are transcribed differentially, in that the mRNA of pumB is more abundant than the pumA transcript. We also observed that pumB could be expressed individually and that its mRNA levels decreased under oxidative stress, during individual expression as well as co-expression of pumAB. However, under stressful conditions, the pumA mRNA levels were not affected. This suggests the negative regulation of pumB by stressful conditions. The PumB purified protein was found to bind to a DNA region located between the P and the pumA coding region, and PumA participates in PumB binding, suggesting that a PumA-PumB complex co-regulates the transcription of the pumAB operon. Interestingly, the pumA mRNA levels decreased after incubation in vitro with PumB protein. This effect was repressed by ribonuclease inhibitors, suggesting that PumB could function as an RNAse toward the mRNA of the toxin. Taken together, we conclude that the PumAB TA system possesses multiple mechanisms to regulate its expression, as well as that the PumB antitoxin generates a decrease in the mRNA toxin levels, suggesting an RNase function. Our analysis provides new insights into the understanding of the control of TA systems from mobile plasmid-encoded genes from a human pathogen.
PumAB 型 II 毒素-抗毒素(TA)系统由 pumAB 基因编码,这些基因组织成一个操纵子。该系统由从铜绿假单胞菌临床株中分离出的 pUM505 质粒编码。pumA 基因编码一种假定的 RelE 毒素蛋白(毒性成分),而 pumB 基因编码一种假定的 HTH 抗毒素蛋白。在大肠杆菌中表达 PumAB 系统赋予质粒稳定性。此外,铜绿假单胞菌中 PumA 毒素的过表达具有增加细菌毒力的能力,这种效应被 PumB 抗毒素中和。本研究旨在建立来自 pUM505 的 PumAB 毒素-抗毒素系统的调控机制。通过对假定的调控元件进行计算机分析,我们在 pumB 上游鉴定出两个假定的内部启动子 P 和 P(除了已经报道的 P 之外)。通过 RT-qPCR 分析,我们确定 pumAB 基因的转录是不同的,即 pumB 的 mRNA 比 pumA 转录本更丰富。我们还观察到 pumB 可以单独表达,并且在氧化应激下,在 pumAB 单独表达和共表达时,其 mRNA 水平下降。然而,在应激条件下,pumA 的 mRNA 水平不受影响。这表明 pumB 受到应激条件的负调控。纯化的 PumB 蛋白被发现与位于 P 和 pumA 编码区之间的 DNA 区域结合,并且 PumA 参与 PumB 结合,表明 PumA-PumB 复合物共同调节 pumAB 操纵子的转录。有趣的是,在体外与 PumB 蛋白孵育后,pumA mRNA 水平下降。该效应被核糖核酸酶抑制剂抑制,表明 PumB 可以作为一种 RNAse 作用于毒素的 mRNA。总之,我们得出结论,PumAB TA 系统具有多种调节其表达的机制,并且 PumB 抗毒素降低了毒素 mRNA 水平,表明其具有 RNAse 功能。我们的分析为理解来自人类病原体的移动质粒编码基因的 TA 系统的控制提供了新的见解。