Nickel David Benjamin, Cruz-Bournazou Mariano Nicolas, Wilms Terrance, Neubauer Peter, Knepper Andreas
Chair of Bioprocess Engineering Institute of Biotechnology Technische Universität Berlin Berlin Germany.
Eng Life Sci. 2016 Nov 14;17(11):1195-1201. doi: 10.1002/elsc.201600035. eCollection 2017 Nov.
Bioprocess development, optimization, and control in mini-bioreactor systems require information about essential process parameters, high data densities, and the ability to dynamically change process conditions. We present an integration approach combining a parallel mini-bioreactor system integrated into a liquid handling station (LHS) with a second LHS for offline analytics. Non-invasive sensors measure pH and DO online. Offline samples are collected every 20 min and acetate, glucose, and OD subsequently analyzed offline. All data are automatically collected, analyzed, formalized, and used for process control and optimization. Fed-batch conditions are realized via a slow enzymatic glucose release system. The integration approach was successfully used to apply an online experimental re-design method to eight fed-batch cultivations. The method utilizes generated data to select the following experimental actions online in order to reach the optimization goal of estimating fed-batch model parameters with as high accuracy as possible. Optimal experimental designs were re-calculated online based on the experimental data and implemented by introducing pulses via the LHS to the running fermentations. The LHS control allows for various implementations of advanced control and optimization strategies in milliliter scale.
微型生物反应器系统中的生物过程开发、优化和控制需要有关基本过程参数的信息、高数据密度以及动态改变过程条件的能力。我们提出了一种集成方法,该方法将集成到液体处理工作站(LHS)中的并行微型生物反应器系统与用于离线分析的第二个LHS相结合。非侵入式传感器在线测量pH值和溶解氧。每20分钟采集一次离线样品,随后离线分析乙酸盐、葡萄糖和光密度。所有数据均自动收集、分析、整理,并用于过程控制和优化。通过缓慢的酶促葡萄糖释放系统实现补料分批培养条件。该集成方法已成功用于将在线实验重新设计方法应用于八次补料分批培养。该方法利用生成的数据在线选择后续的实验操作,以实现尽可能高精度地估计补料分批模型参数的优化目标。基于实验数据在线重新计算最优实验设计,并通过LHS向正在进行的发酵引入脉冲来实施。LHS控制允许在毫升规模上对各种先进的控制和优化策略进行多种实现。