Suppr超能文献

用于毫升规模平行补料分批发酵的在线生物过程数据生成、分析和优化。

Online bioprocess data generation, analysis, and optimization for parallel fed-batch fermentations in milliliter scale.

作者信息

Nickel David Benjamin, Cruz-Bournazou Mariano Nicolas, Wilms Terrance, Neubauer Peter, Knepper Andreas

机构信息

Chair of Bioprocess Engineering Institute of Biotechnology Technische Universität Berlin Berlin Germany.

出版信息

Eng Life Sci. 2016 Nov 14;17(11):1195-1201. doi: 10.1002/elsc.201600035. eCollection 2017 Nov.

Abstract

Bioprocess development, optimization, and control in mini-bioreactor systems require information about essential process parameters, high data densities, and the ability to dynamically change process conditions. We present an integration approach combining a parallel mini-bioreactor system integrated into a liquid handling station (LHS) with a second LHS for offline analytics. Non-invasive sensors measure pH and DO online. Offline samples are collected every 20 min and acetate, glucose, and OD subsequently analyzed offline. All data are automatically collected, analyzed, formalized, and used for process control and optimization. Fed-batch conditions are realized via a slow enzymatic glucose release system. The integration approach was successfully used to apply an online experimental re-design method to eight fed-batch cultivations. The method utilizes generated data to select the following experimental actions online in order to reach the optimization goal of estimating fed-batch model parameters with as high accuracy as possible. Optimal experimental designs were re-calculated online based on the experimental data and implemented by introducing pulses via the LHS to the running fermentations. The LHS control allows for various implementations of advanced control and optimization strategies in milliliter scale.

摘要

微型生物反应器系统中的生物过程开发、优化和控制需要有关基本过程参数的信息、高数据密度以及动态改变过程条件的能力。我们提出了一种集成方法,该方法将集成到液体处理工作站(LHS)中的并行微型生物反应器系统与用于离线分析的第二个LHS相结合。非侵入式传感器在线测量pH值和溶解氧。每20分钟采集一次离线样品,随后离线分析乙酸盐、葡萄糖和光密度。所有数据均自动收集、分析、整理,并用于过程控制和优化。通过缓慢的酶促葡萄糖释放系统实现补料分批培养条件。该集成方法已成功用于将在线实验重新设计方法应用于八次补料分批培养。该方法利用生成的数据在线选择后续的实验操作,以实现尽可能高精度地估计补料分批模型参数的优化目标。基于实验数据在线重新计算最优实验设计,并通过LHS向正在进行的发酵引入脉冲来实施。LHS控制允许在毫升规模上对各种先进的控制和优化策略进行多种实现。

相似文献

引用本文的文献

4
Deep reinforcement learning for optimal experimental design in biology.深度学习在生物学实验设计中的应用。
PLoS Comput Biol. 2022 Nov 21;18(11):e1010695. doi: 10.1371/journal.pcbi.1010695. eCollection 2022 Nov.
9
Editorial: Bioprocess Development in the era of digitalization.社论:数字化时代的生物工艺开发
Eng Life Sci. 2017 Nov 3;17(11):1140-1141. doi: 10.1002/elsc.201770113. eCollection 2017 Nov.

本文引用的文献

6
Oxygen transfer characteristics of miniaturized bioreactor systems.小型化生物反应器系统的氧传递特性。
Biotechnol Bioeng. 2013 Apr;110(4):1005-19. doi: 10.1002/bit.24824. Epub 2013 Jan 17.
9
SiLA: Basic standards for rapid integration in laboratory automation.SiLA:实验室自动化快速集成的基本标准。
J Lab Autom. 2012 Apr;17(2):86-95. doi: 10.1177/2211068211424550. Epub 2012 Jan 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验