Department of Cell and Developmental Biology, University College London, London, United Kingdom.
Department of Applied Mathematics, University of Waterloo, Waterloo, Canada.
PLoS Comput Biol. 2022 Nov 21;18(11):e1010695. doi: 10.1371/journal.pcbi.1010695. eCollection 2022 Nov.
The field of optimal experimental design uses mathematical techniques to determine experiments that are maximally informative from a given experimental setup. Here we apply a technique from artificial intelligence-reinforcement learning-to the optimal experimental design task of maximizing confidence in estimates of model parameter values. We show that a reinforcement learning approach performs favourably in comparison with a one-step ahead optimisation algorithm and a model predictive controller for the inference of bacterial growth parameters in a simulated chemostat. Further, we demonstrate the ability of reinforcement learning to train over a distribution of parameters, indicating that this approach is robust to parametric uncertainty.
最优实验设计领域使用数学技术来确定从给定实验设置中获得最大信息量的实验。在这里,我们将人工智能中的强化学习技术应用于最大化模型参数值估计置信度的最优实验设计任务。我们表明,强化学习方法在模拟恒化器中推断细菌生长参数的推断方面,优于一步优化算法和模型预测控制器。此外,我们还证明了强化学习能够在参数分布上进行训练,表明这种方法对参数不确定性具有鲁棒性。