Choi Yong-Keun, Kim Hyun-Joong, Kumaran Rangarajulu Senthil, Song Hak-Jin, Song Kyung-Guen, Kim Kwang Jin, Lee Sang Hyun, Yang Yung-Hun, Kim Hyung Joo
Department of Biological Engineering Konkuk University Seoul Republic of Korea.
Water Environment Center KIST Seoul Republic of Korea.
Eng Life Sci. 2017 Apr 18;17(9):976-980. doi: 10.1002/elsc.201700001. eCollection 2017 Sep.
Microalgae are gaining importance as a source of high-value bioproducts. However, data regarding optimization of algal productivity via variation of environmental factors are lacking. Here, we evaluated a novel lighting method for the enhancement of biomass and total fatty acid (TFA) productivities during algal cultivation. We cultivated six different algal strains ( KCTC AG10002, KGE18, sp. KGE03, KGE19, sp., and sp.) under various lighting conditions-continuous light (CL), light-dark cycle (LD), and continuous dark (CD)-with or without additional flashing light. We monitored dry cell weight (DCW) and TFA concentrations during cultivation. For each algal strain, the growth rate showed markedly different responses to the various lighting modes. The growth rates of KCTC AG10002 (1.34-fold DCW increase, LD with flash), . KGE18 (5.16-fold DCW increase, LD with flash), sp. KGE03 (2.77-fold DCW increase, CL with flash), and . KGE19 (1.52-fold DCW increase, CL with flash) markedly increased in response to flashing light. Additionally, in some algal strains cultivated under the LD mode, the flashing light treatment induced increased TFA concentrations (. , 1.19-fold increase; . , 2.59-fold increase; and . , 3.31-fold increase). Phytohormone analysis of . revealed increases in growth rate and TFA concentrations, associated with phytohormone induction via flashing light (e.g. 2.93-fold increase in gibberellic acid); hence, flashing light can promote substantial alterations in algal metabolism.
微藻作为高价值生物产品的来源正变得越来越重要。然而,关于通过环境因素变化来优化藻类生产力的数据却很缺乏。在此,我们评估了一种新型照明方法,以提高藻类培养过程中的生物量和总脂肪酸(TFA)生产力。我们在各种照明条件下——连续光照(CL)、明暗循环(LD)和连续黑暗(CD)——培养了六种不同的藻类菌株(KCTC AG10002、KGE18、KGE03菌株、KGE19、菌株和菌株),有无额外的闪光。在培养过程中,我们监测了干细胞重量(DCW)和TFA浓度。对于每种藻类菌株,其生长速率对各种照明模式表现出明显不同的反应。KCTC AG10002(干细胞重量增加1.34倍,有闪光的LD模式)、KGE18(干细胞重量增加5.16倍,有闪光的LD模式)、KGE03菌株(干细胞重量增加2.77倍,有闪光的CL模式)和KGE19(干细胞重量增加1.52倍,有闪光的CL模式)的生长速率因闪光而显著增加。此外,在LD模式下培养的一些藻类菌株中,闪光处理导致TFA浓度增加(、增加1.19倍;、增加2.59倍;和、增加3.31倍)。对的植物激素分析显示,生长速率和TFA浓度增加,这与闪光诱导植物激素有关(例如赤霉素增加2.93倍);因此,闪光可以促进藻类代谢的显著变化。