Suppr超能文献

一种用于神经元电导率反问题求解的计算方法。

A computational approach for the inverse problem of neuronal conductances determination.

机构信息

Laboratório Nacional de Computação Científica, Petrópolis, RJ, Brazil.

EPGE - Fundação Getúlio Vargas, Rio de Janeiro, RJ, Brazil.

出版信息

J Comput Neurosci. 2020 Aug;48(3):281-297. doi: 10.1007/s10827-020-00752-7. Epub 2020 Jul 6.

Abstract

The derivation by Alan Hodgkin and Andrew Huxley of their famous neuronal conductance model relied on experimental data gathered using the squid giant axon. However, the experimental determination of conductances of neurons is difficult, in particular under the presence of spatial and temporal heterogeneities, and it is also reasonable to expect variations between species or even between different types of neurons of the same species.We tackle the inverse problem of determining, given voltage data, conductances with non-uniform distribution in the simpler setting of a passive cable equation, both in a single or branched neurons. To do so, we consider the minimal error iteration, a computational technique used to solve inverse problems. We provide several numerical results showing that the method is able to provide reasonable approximations for the conductances, given enough information on the voltages, even for noisy data.

摘要

艾伦·霍奇金(Alan Hodgkin)和安德鲁·赫胥黎(Andrew Huxley)推导著名的神经元电导模型,依赖于使用鱿鱼巨大轴突收集的实验数据。然而,神经元电导的实验测定是困难的,特别是在存在空间和时间异质性的情况下,并且物种之间甚至同一物种的不同类型神经元之间也存在差异是合理的。我们在更简单的单个或分支神经元的无源电缆方程中,处理了给定电压数据时,电导具有非均匀分布的逆问题。为此,我们考虑最小误差迭代,这是一种用于解决逆问题的计算技术。我们提供了几个数值结果,表明该方法能够在给定足够电压信息的情况下,即使在噪声数据的情况下,也能为电导提供合理的近似值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验