Laboratório Nacional de Computação Científica, Petrópolis, RJ, Brazil.
EPGE - Fundação Getúlio Vargas, Rio de Janeiro, RJ, Brazil.
J Comput Neurosci. 2020 Aug;48(3):281-297. doi: 10.1007/s10827-020-00752-7. Epub 2020 Jul 6.
The derivation by Alan Hodgkin and Andrew Huxley of their famous neuronal conductance model relied on experimental data gathered using the squid giant axon. However, the experimental determination of conductances of neurons is difficult, in particular under the presence of spatial and temporal heterogeneities, and it is also reasonable to expect variations between species or even between different types of neurons of the same species.We tackle the inverse problem of determining, given voltage data, conductances with non-uniform distribution in the simpler setting of a passive cable equation, both in a single or branched neurons. To do so, we consider the minimal error iteration, a computational technique used to solve inverse problems. We provide several numerical results showing that the method is able to provide reasonable approximations for the conductances, given enough information on the voltages, even for noisy data.
艾伦·霍奇金(Alan Hodgkin)和安德鲁·赫胥黎(Andrew Huxley)推导著名的神经元电导模型,依赖于使用鱿鱼巨大轴突收集的实验数据。然而,神经元电导的实验测定是困难的,特别是在存在空间和时间异质性的情况下,并且物种之间甚至同一物种的不同类型神经元之间也存在差异是合理的。我们在更简单的单个或分支神经元的无源电缆方程中,处理了给定电压数据时,电导具有非均匀分布的逆问题。为此,我们考虑最小误差迭代,这是一种用于解决逆问题的计算技术。我们提供了几个数值结果,表明该方法能够在给定足够电压信息的情况下,即使在噪声数据的情况下,也能为电导提供合理的近似值。