Easton D M
Biophys J. 1978 Apr;22(1):15-28. doi: 10.1016/S0006-3495(78)85467-8.
The conductance changes, gK(t) and gNa(t), of squid giant axon under voltage clamp (Hodgkin and Huxley, 1952) may be modeled by exponentiated exponential functions (Gompertz kinetics) from any holding potential VO to any membrane clamp potential V. The equation constants are set by the membrane potential V, and include, for any voltage step in the case of gK, the initial conductance, gO, the asymptote conductance g, and rate constant k: gK = g exp(-be-kt) where b = 1n g/gO. Equations of similar form relate g and k to the voltage V, and govern the corresponding parameters of the gNa system. For the gNa, the fast phase y = y exp (-be-kt) is cut down in proportion to a slow process p = (1 - p)e-k't + p, and thus gNa = py. The expo-exponential functions involve fewer constants than the Hodgkin-Huxley model. In particular, the role of the n, m, h parameters appears to be filled largely by 1n (g/gO) in the case of gK and by 1n (y/yO) in the case of gNa. Membrane action potentials during current clamp may be computed from the conductances generated by use of the appropriate differential forms of the equations; diverse other membrane behaviors may be predicted.
在电压钳制下(霍奇金和赫胥黎,1952年),鱿鱼巨轴突的电导变化gK(t)和gNa(t)可以用指数化指数函数(冈珀茨动力学)进行建模,从任何保持电位VO到任何膜钳制电位V。方程常数由膜电位V设定,对于gK的任何电压阶跃,包括初始电导gO、渐近电导g和速率常数k:gK = g exp(-be-kt),其中b = 1n g/gO。类似形式的方程将g和k与电压V相关联,并控制gNa系统的相应参数。对于gNa,快速相y = y exp (-be-kt)按与缓慢过程p = (1 - p)e-k't + p成比例地减小,因此gNa = py。指数化指数函数涉及的常数比霍奇金-赫胥黎模型少。特别是,在gK的情况下,n、m、h参数的作用似乎在很大程度上由1n (g/gO)填补,在gNa的情况下由1n (y/yO)填补。电流钳制期间的膜动作电位可以根据通过使用方程的适当微分形式产生的电导来计算;可以预测各种其他膜行为。