Kong Dezhi, Wang Ye, Huang Shaozhuan, Zhang Biao, Lim Yew Von, Sim Glenn Joey, Valdivia Y Alvarado Pablo, Ge Qi, Yang Hui Ying
Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
Key Laboratory of Material Physics of Ministry of Education, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China.
ACS Nano. 2020 Aug 25;14(8):9675-9686. doi: 10.1021/acsnano.0c01157. Epub 2020 Jul 19.
The design of a compressible battery with stable electrochemical performance is extremely important in compression-tolerant and flexible electronics. While this remains challenging with the current battery manufacturing method, the field of 3D printing offers the possibility of producing free-standing 3D-printed electrodes with various structural configurations. Through the simple and scalable strategy, various structural configurations can be produced. Herein, we demonstrate a 3D-printed quasi-solid-state Ni-Fe battery (QSS-NFB) that shows excellent compressibility, ultrahigh energy density, and superior long-term cycling durability. Through a rational design and adjustment of chemical components, two electrodes consisting of ultrathin Ni(OH) nanosheet array cathode and holey α-FeO nanorod array anode are achieved with a ultrahigh active material loading over 130 mg cm and excellent compressibility up to 60%. It is noteworthy that the compressible QSS-NFB demonstrated an excellent cycling stability (∼91.3% capacity retentions after 10000 cycles) and ultrahigh energy density (28.1 mWh cm at a power of 10.6 mW cm). This work provides a simple method for producing compression-tolerant energy-storage devices, which are expected to have promising applications in next generation stretchable/wearable electronics.
对于耐压缩和柔性电子设备而言,设计具有稳定电化学性能的可压缩电池极为重要。尽管采用当前的电池制造方法实现这一点仍具有挑战性,但3D打印领域为生产具有各种结构配置的独立式3D打印电极提供了可能性。通过这种简单且可扩展的策略,可以生产出各种结构配置。在此,我们展示了一种3D打印的准固态镍铁电池(QSS-NFB),它具有出色的可压缩性、超高能量密度和卓越的长期循环耐久性。通过合理设计和调整化学成分,实现了由超薄Ni(OH)纳米片阵列阴极和多孔α-FeO纳米棒阵列阳极组成的两个电极,其活性材料负载量超高,超过130 mg cm ,可压缩性高达60%。值得注意的是,这种可压缩的QSS-NFB表现出出色的循环稳定性(10000次循环后容量保持率约为91.3%)和超高能量密度(在功率为10.6 mW cm 时为28.1 mWh cm )。这项工作提供了一种生产耐压缩储能设备的简单方法,有望在下一代可拉伸/可穿戴电子设备中得到广泛应用。