Du Jingwei, Mu Xuemei, Zhao Yirong, Zhang Yaxiong, Zhang Shengming, Huang Baoyu, Sheng Yingzhuo, Xie Yizhu, Zhang Zhenxing, Xie Erqing
School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China.
Nanoscale. 2019 Aug 1;11(30):14392-14399. doi: 10.1039/c9nr03917a.
To meet the demand of rapid development of portable and wearable electronic devices, in-plane quasi-solid-state micro-supercapacitors (QSS MSCs) have great potential as miniaturized energy storage devices. However, their ultralow areal capacitance and poor flexibility limit their practical applications. Here, we demonstrate a new strategy for the fabrication of ultraflexible MnO2@reduced graphene oxide (rGO) films (MGFs) for high-performance planar QSS MSCs through a facile layer-by-layer coating and a laser engraving method. Benefiting from conductive and flexible rGO films reduced by HI, the MGF based symmetrical QSS MSC exhibits a high areal capacitance (31.5 mF cm-2 at 0.2 mA cm-2), excellent flexibility (no capacity degradation at a bending radius from ∞ to 0 cm), and outstanding cycling stability (retaining 77.0% of its initial capacity after 6000 cycles). Most importantly, the electrochemical performance of QSS MSCs can be multiplied by simply adding more MGF layers. By adding up to 5 MGF layers, the MSC can deliver an ultrahigh areal capacitance of 144.3 mF cm-2 at 0.3 mA cm-2, and a superior energy density of 13.9 mW h cm-3 at 34.7 mW cm-3. Therefore, this work offers versatile quasi-solid-state MSCs and provides an impressive strategy to enhance electrochemical performance which will greatly enrich the design and fabrication of MSCs.
为满足便携式和可穿戴电子设备快速发展的需求,平面准固态微型超级电容器(QSS MSCs)作为小型化储能设备具有巨大潜力。然而,其超低的面积电容和较差的柔韧性限制了它们的实际应用。在此,我们展示了一种通过简便的逐层涂覆和激光雕刻方法制备用于高性能平面QSS MSCs的超柔性MnO2@还原氧化石墨烯(rGO)薄膜(MGFs)的新策略。受益于由HI还原的导电且柔性的rGO薄膜,基于MGF的对称QSS MSC表现出高面积电容(在0.2 mA cm-2时为31.5 mF cm-2)、优异的柔韧性(在弯曲半径从∞到0 cm时容量无下降)和出色的循环稳定性(在6000次循环后保留其初始容量的77.0%)。最重要的是,通过简单地添加更多MGF层,QSS MSCs的电化学性能可以成倍提高。通过添加多达5层MGF,MSC在0.3 mA cm-2时可提供144.3 mF cm-2的超高面积电容,在34.7 mW cm-3时具有13.9 mW h cm-3的优异能量密度。因此,这项工作提供了多功能的准固态MSCs,并提供了一种令人印象深刻的提高电化学性能的策略,这将极大地丰富MSCs的设计和制造。