Oh Kyungbae, Kang Kisuk
Department of Materials Science and Engineering, Research Institute for Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
Angew Chem Int Ed Engl. 2020 Oct 12;59(42):18457-18462. doi: 10.1002/anie.202007447. Epub 2020 Aug 17.
The successful launch of solid-state batteries relies on the discovery of solid electrolytes with remarkably high ionic conductivity. Extensive efforts have identified several important superionic conductors (SICs) and broadened our understanding of their superionic conductivity. Herein, we propose a new design strategy to facilitate ionic conduction in SICs by planting immobile repulsion centers. Our ab initio molecular dynamics simulations on the model system Na Sn PS demonstrate that the sodium ionic conductivity can be increased by approximately one order of magnitude by simply doping large Cs ions as repulsion centers in the characteristic vacant site of Na Sn PS . Planting immobile repulsion centers locally induces the formation of high-energy sites, leading to a fast track for ionic conduction owing to the unique interactions among mobile ions in SICs. Seemingly non-intuitive approaches tailor the ionic diffusion by exploiting these immobile repulsion centers.
固态电池的成功研发依赖于发现具有极高离子电导率的固体电解质。大量研究已确定了几种重要的超离子导体(SICs),并拓宽了我们对其超离子导电性的理解。在此,我们提出一种新的设计策略,通过植入固定的排斥中心来促进SICs中的离子传导。我们对模型系统NaSnPS进行的从头算分子动力学模拟表明,通过在NaSnPS的特征空位中简单地掺杂大尺寸Cs离子作为排斥中心,钠离子电导率可提高约一个数量级。局部植入固定的排斥中心会诱导高能位点的形成,由于SICs中移动离子之间独特的相互作用,从而形成离子传导的快速通道。看似非直观的方法通过利用这些固定的排斥中心来调整离子扩散。