Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain.
Freshage Research Group, Department Physiotherapy, Faculty of Physiotherapy, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain.
Biomolecules. 2020 Jun 25;10(6):957. doi: 10.3390/biom10060957.
Aging is accompanied by the accumulation of senescent cells that alter intercellular communication, thereby impairing tissue homeostasis and reducing organ regenerative potential. Recently, the administration of mesenchymal stem cells (MSC)-derived extracellular vesicles has proven to be more effective and less challenging than current stem cell-based therapies. Extracellular vesicles (EVs) contain a cell-specific cargo of proteins, lipids and nucleic acids that are released and taken up by probably all cell types, thereby inducing functional changes via the horizontal transfer of their cargo. Here, we describe the beneficial properties of extracellular vesicles derived from non-senescent MSC, cultured in a low physiological oxygen tension (3%) microenvironment into prematurely senescent MSC, cultured in a hyperoxic ambient (usual oxygen culture conditions, i.e., 21%). We observed that senescent MCS, treated with EVs from non-senescent MCS, showed reduced SA-β-galactosidase activity levels and pluripotency factor (OCT4, SOX2, KLF4 and cMYC, or OSKM) overexpression and increased glycolysis, as well as reduced oxidative phosphorylation (OXPHOS). Moreover, these EVs' cargo induced the upregulation of miR-302b and HIF-1α levels in the target cells. We propose that miR-302b triggered HIF-1α upregulation, which in turn activated different pathways to delay premature senescence, improve stemness and switch energetic metabolism towards glycolysis. Taken together, we suggest that EVs could be a powerful tool to restore altered intercellular communication and improve stem cell function and stemness, thus delaying stem cell exhaustion in aging.
衰老伴随着衰老细胞的积累,这些细胞改变细胞间的通讯,从而损害组织内稳态并降低器官再生潜力。最近,间充质干细胞(MSC)衍生的细胞外囊泡的给药被证明比目前基于干细胞的疗法更有效且挑战性更小。细胞外囊泡(EVs)包含细胞特异性货物的蛋白质、脂质和核酸,这些货物被释放并被可能所有细胞类型摄取,从而通过其货物的水平转移诱导功能变化。在这里,我们描述了在低生理氧张力(3%)微环境中培养的非衰老 MSC 衍生的细胞外囊泡的有益特性,进入高氧环境(通常的氧气培养条件,即 21%)培养的过早衰老 MSC。我们观察到,用非衰老 MSC 的 EV 处理衰老 MSC,可降低 SA-β-半乳糖苷酶活性水平和多能性因子(OCT4、SOX2、KLF4 和 cMYC 或 OSKM)过表达,并增加糖酵解,同时减少氧化磷酸化(OXPHOS)。此外,这些 EV 货物诱导靶细胞中 miR-302b 和 HIF-1α 水平的上调。我们提出,miR-302b 触发 HIF-1α 的上调,进而激活不同的途径来延缓过早衰老,改善干性和将能量代谢转向糖酵解。总之,我们认为 EVs 可以成为恢复改变的细胞间通讯和改善干细胞功能和干性从而延缓衰老中干细胞衰竭的有力工具。