Suppr超能文献

[患者社会地位信息的收集方式。对私人医疗实践中所使用话语的人类学分析]

[How information on a patient's social status is gathered. An anthropological analysis of the discourses employed in private medical practice].

作者信息

Desprès C

机构信息

Centre de recherche des Cordeliers, équipe d'accueil ÊTRES, université de Paris René-Descartes, 45, rue des Saints-Pères, 75006 Paris, France.

出版信息

Rev Epidemiol Sante Publique. 2020 Aug;68(4):235-242. doi: 10.1016/j.respe.2020.06.001. Epub 2020 Jul 4.

Abstract

BACKGROUND

A number of studies have highlighted differences and even discrimination in health care offer according to social category, and shown that they contribute to the production of inequality. On the other hand, when the health care system treats every patient equally, and does not take personal difficulties into consideration, some authors have suggested inequality "by omission". That is why public health actors at different levels have recommended systematic collection of information on patients' social status. The objective of this article is to analyze data gathering on patients' socio-economic condition and its repercussions.

METHODS

The survey is based on more than 50 semi-structured face-to-face interviews with doctors and dentists in private practice. Their answers were subjected to socio-anthropological analysis.

RESULTS

While some practitioners collect information on patients' social status proactively by systematic interrogation, others proceed indirectly and in accordance with subjective criteria. Quite often, patient status remains ignored, usually due to lack of interest, and less frequently because practitioners wish to guard against any risk of stigmatizing underprivileged patients. Different rationales may explain these attitudes: need to prioritize relevant information, wish to observe equity and equality, determination to refrain from social labeling, desire to protect patient self-esteem and to reinforce the practitioner-patient relationship. When identification does occur, it is essentially justified by a desire to adapt the care pathway to potential socio-economic obstacles.

CONCLUSION

When a patient's social situation is sought out by private doctors and dentists, they are mainly concerned with customizing care pathways by taking financial impediments into close consideration. In most cases, their justifications for asking questions are subjective; by doing so, they inadvertently introduce arbitrariness in an area where the French state endeavors to produce social justice via provisions such as "CMU" ("universal", across the board health coverage). Systematic questioning on a patient's social status can represent a form of supplementary if unconscious symbolic violence toward frequently disqualified persons; what is more, it runs the risk of inducing stereotypes and manifesting prejudice. Only when contextualized does such questioning seem appropriate. On the other hand, when a practitioner misses out on social issues liable to impede care and treatment, he will probably have no "second chance" to address these concerns. Some practitioners have emphasized a need for suitable timing and contextualizing of questions on a patient's social status, and for putting them forward in a climate of trust.

摘要

背景

多项研究强调了医疗服务在提供方面根据社会类别存在的差异甚至歧视,并表明这些差异和歧视加剧了不平等的产生。另一方面,当医疗系统平等对待每一位患者,而不考虑个人困难时,一些作者提出了“因疏忽导致的不平等”。这就是为什么不同层面的公共卫生工作者建议系统收集患者社会状况信息的原因。本文的目的是分析关于患者社会经济状况的数据收集及其影响。

方法

该调查基于对50多名私人执业医生和牙医进行的半结构化面对面访谈。他们的回答接受了社会人类学分析。

结果

一些从业者通过系统询问主动收集患者社会状况信息,而另一些从业者则间接且依据主观标准进行收集。患者状况常常被忽视,通常是因为缺乏兴趣,较少情况下是因为从业者希望避免给弱势患者贴上标签的任何风险。不同的理由可以解释这些态度:需要对相关信息进行优先排序、希望遵守公平和平等原则、决心避免社会标签化、渴望保护患者自尊以及加强医患关系。当确实进行身份识别时,其主要理由是希望根据潜在的社会经济障碍调整护理路径。

结论

当私人医生和牙医询问患者的社会状况时,他们主要关注的是通过密切考虑经济障碍来定制护理路径。在大多数情况下,他们提问的理由是主观的;这样做时,他们在法国国家通过诸如“全民医保”(涵盖所有人的全面医保)等规定努力实现社会正义的领域中不经意地引入了随意性。对患者社会状况进行系统询问可能代表了一种对经常被边缘化的人无意识的补充性象征性暴力形式;此外,它有引发刻板印象和表现出偏见的风险。只有在结合具体情境时,这种询问才似乎是合适的。另一方面,当从业者忽略可能妨碍护理和治疗的社会问题时,他可能没有“第二次机会”来解决这些问题。一些从业者强调需要在合适的时机并结合具体情境询问患者的社会状况,并在信任的氛围中提出这些问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验