Suppr超能文献

普遍推断。

Universal inference.

机构信息

Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213;

Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213.

出版信息

Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):16880-16890. doi: 10.1073/pnas.1922664117. Epub 2020 Jul 6.

Abstract

We propose a general method for constructing confidence sets and hypothesis tests that have finite-sample guarantees without regularity conditions. We refer to such procedures as "universal." The method is very simple and is based on a modified version of the usual likelihood-ratio statistic that we call "the split likelihood-ratio test" (split LRT) statistic. The (limiting) null distribution of the classical likelihood-ratio statistic is often intractable when used to test composite null hypotheses in irregular statistical models. Our method is especially appealing for statistical inference in these complex setups. The method we suggest works for any parametric model and also for some nonparametric models, as long as computing a maximum-likelihood estimator (MLE) is feasible under the null. Canonical examples arise in mixture modeling and shape-constrained inference, for which constructing tests and confidence sets has been notoriously difficult. We also develop various extensions of our basic methods. We show that in settings when computing the MLE is hard, for the purpose of constructing valid tests and intervals, it is sufficient to upper bound the maximum likelihood. We investigate some conditions under which our methods yield valid inferences under model misspecification. Further, the split LRT can be used with profile likelihoods to deal with nuisance parameters, and it can also be run sequentially to yield anytime-valid P values and confidence sequences. Finally, when combined with the method of sieves, it can be used to perform model selection with nested model classes.

摘要

我们提出了一种通用的方法,用于构建具有有限样本保证而无需正则条件的置信集和假设检验。我们将这种方法称为“通用”。该方法非常简单,基于我们称之为“分裂似然比检验”(split LRT)统计量的常用似然比统计量的修改版本。当用于检验不规则统计模型中的复合零假设时,经典似然比统计量的(极限)零分布通常难以处理。我们的方法特别适用于这些复杂设置中的统计推断。我们建议的方法适用于任何参数模型,也适用于一些非参数模型,只要在零假设下计算最大似然估计(MLE)是可行的。典型的例子出现在混合建模和形状约束推理中,对于这些模型,构建检验和置信集一直是非常困难的。我们还开发了我们基本方法的各种扩展。我们表明,在计算 MLE 困难的情况下,为了构建有效的检验和区间,只需对最大似然进行上界即可。我们研究了在模型误设的情况下我们的方法产生有效推断的一些条件。此外,split LRT 可以与轮廓似然一起用于处理烦扰参数,并且可以顺序运行以生成任何时候有效的 P 值和置信序列。最后,当与筛子方法结合使用时,它可用于执行嵌套模型类的模型选择。

相似文献

1
Universal inference.普遍推断。
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):16880-16890. doi: 10.1073/pnas.1922664117. Epub 2020 Jul 6.
2
On specification tests for composite likelihood inference.关于复合似然推断的规格检验。
Biometrika. 2020 Dec;107(4):907-917. doi: 10.1093/biomet/asaa039. Epub 2020 Jun 14.
6
On High-Dimensional Constrained Maximum Likelihood Inference.关于高维约束最大似然推断
J Am Stat Assoc. 2020;115(529):217-230. doi: 10.1080/01621459.2018.1540986. Epub 2019 Apr 11.
7
Bootstrap Model-Based Constrained Optimization Tests of Indirect Effects.基于自举模型的间接效应约束优化测试
Front Psychol. 2020 Jan 20;10:2989. doi: 10.3389/fpsyg.2019.02989. eCollection 2019.
8
A modern maximum-likelihood theory for high-dimensional logistic regression.一种高维逻辑回归的现代极大似然理论。
Proc Natl Acad Sci U S A. 2019 Jul 16;116(29):14516-14525. doi: 10.1073/pnas.1810420116. Epub 2019 Jul 1.
10
Model-robust inference for continuous threshold regression models.连续阈值回归模型的模型稳健推断
Biometrics. 2017 Jun;73(2):452-462. doi: 10.1111/biom.12623. Epub 2016 Nov 17.

引用本文的文献

1
Combining exchangeable -values.结合可交换价值。
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2410849122. doi: 10.1073/pnas.2410849122. Epub 2025 Mar 14.
2
Asymptotic Distribution-Free Independence Test for High Dimension Data.高维数据的渐近无分布独立性检验
J Am Stat Assoc. 2024;119(547):1794-1804. doi: 10.1080/01621459.2023.2218030. Epub 2023 Dec 21.
6
Novel Uncertainty Quantification Through Perturbation-Assisted Sample Synthesis.通过扰动辅助样本合成实现新型不确定性量化
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):7813-7824. doi: 10.1109/TPAMI.2024.3393364. Epub 2024 Nov 6.
9
Significance Tests of Feature Relevance for a Black-Box Learner.黑箱学习器的特征相关性显著性检验
IEEE Trans Neural Netw Learn Syst. 2022 Jun 30;PP. doi: 10.1109/TNNLS.2022.3185742.

本文引用的文献

1
Robust Bayesian inference via coarsening.通过粗化进行稳健贝叶斯推断。
J Am Stat Assoc. 2019;114(527):1113-1125. doi: 10.1080/01621459.2018.1469995. Epub 2018 Aug 6.
2
Confidence sequences for mean, variance, and median.均值、方差和中位数的置信序列。
Proc Natl Acad Sci U S A. 1967 Jul;58(1):66-8. doi: 10.1073/pnas.58.1.66.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验