Suppr超能文献

高维数据的渐近无分布独立性检验

Asymptotic Distribution-Free Independence Test for High Dimension Data.

作者信息

Cai Zhanrui, Lei Jing, Roeder Kathryn

机构信息

Faculty of Business and Economics, The University of Hong Kong.

Department of Statistics and Data Science, Carnegie Mellon University.

出版信息

J Am Stat Assoc. 2024;119(547):1794-1804. doi: 10.1080/01621459.2023.2218030. Epub 2023 Dec 21.

Abstract

Test of independence is of fundamental importance in modern data analysis, with broad applications in variable selection, graphical models, and causal inference. When the data is high dimensional and the potential dependence signal is sparse, independence testing becomes very challenging without distributional or structural assumptions. In this paper, we propose a general framework for independence testing by first fitting a classifier that distinguishes the joint and product distributions, and then testing the significance of the fitted classifier. This framework allows us to borrow the strength of the most advanced classification algorithms developed from the modern machine learning community, making it applicable to high dimensional, complex data. By combining a sample split and a fixed permutation, our test statistic has a universal, fixed Gaussian null distribution that is independent of the underlying data distribution. Extensive simulations demonstrate the advantages of the newly proposed test compared with existing methods. We further apply the new test to a single cell data set to test the independence between two types of single cell sequencing measurements, whose high dimensionality and sparsity make existing methods hard to apply.

摘要

独立性检验在现代数据分析中至关重要,在变量选择、图形模型和因果推断等方面有广泛应用。当数据是高维的且潜在的依赖信号稀疏时,在没有分布或结构假设的情况下,独立性检验变得非常具有挑战性。在本文中,我们提出了一个用于独立性检验的通用框架,首先拟合一个区分联合分布和乘积分布的分类器,然后检验拟合分类器的显著性。这个框架使我们能够借助现代机器学习社区开发的最先进分类算法的优势,使其适用于高维、复杂的数据。通过结合样本分割和固定排列,我们的检验统计量具有通用的、固定的高斯零分布,该分布与基础数据分布无关。大量模拟表明,新提出的检验方法与现有方法相比具有优势。我们进一步将新检验应用于一个单细胞数据集,以检验两种单细胞测序测量之间的独立性,其高维度和稀疏性使得现有方法难以应用。

相似文献

1
Asymptotic Distribution-Free Independence Test for High Dimension Data.
J Am Stat Assoc. 2024;119(547):1794-1804. doi: 10.1080/01621459.2023.2218030. Epub 2023 Dec 21.
2
Model-free prediction test with application to genomics data.
Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2205518119. doi: 10.1073/pnas.2205518119. Epub 2022 Aug 15.
3
Nonparametric Causal Structure Learning in High Dimensions.
Entropy (Basel). 2022 Feb 28;24(3):351. doi: 10.3390/e24030351.
4
ASYMPTOTIC DISTRIBUTIONS OF HIGH-DIMENSIONAL DISTANCE CORRELATION INFERENCE.
Ann Stat. 2021 Aug;49(4):1999-2020. doi: 10.1214/20-aos2024. Epub 2021 Sep 29.
5
Testing generalized linear models with high-dimensional nuisance parameter.
Biometrika. 2023 Mar;110(1):83-99. doi: 10.1093/biomet/asac021. Epub 2022 Apr 5.
6
Kernel-Based Independence Tests for Causal Structure Learning on Functional Data.
Entropy (Basel). 2023 Nov 28;25(12):1597. doi: 10.3390/e25121597.
7
Joint Learning of Multiple Sparse Matrix Gaussian Graphical Models.
IEEE Trans Neural Netw Learn Syst. 2015 Nov;26(11):2606-20. doi: 10.1109/TNNLS.2014.2384201. Epub 2015 Mar 4.
8
A Blockwise Bootstrap-Based Two-Sample Test for High-Dimensional Time Series.
Entropy (Basel). 2024 Mar 1;26(3):226. doi: 10.3390/e26030226.
9
Nonparametric Independence Screening in Sparse Ultra-High Dimensional Varying Coefficient Models.
J Am Stat Assoc. 2014;109(507):1270-1284. doi: 10.1080/01621459.2013.879828.
10
Testing conditional quantile independence with functional covariate.
Biometrics. 2024 Mar 27;80(2). doi: 10.1093/biomtc/ujae036.

本文引用的文献

1
scMoC: single-cell multi-omics clustering.
Bioinform Adv. 2022 Feb 15;2(1):vbac011. doi: 10.1093/bioadv/vbac011. eCollection 2022.
2
Model-free prediction test with application to genomics data.
Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2205518119. doi: 10.1073/pnas.2205518119. Epub 2022 Aug 15.
3
Causal discoveries for high dimensional mixed data.
Stat Med. 2022 Oct 30;41(24):4924-4940. doi: 10.1002/sim.9544. Epub 2022 Aug 15.
4
ASYMPTOTIC DISTRIBUTIONS OF HIGH-DIMENSIONAL DISTANCE CORRELATION INFERENCE.
Ann Stat. 2021 Aug;49(4):1999-2020. doi: 10.1214/20-aos2024. Epub 2021 Sep 29.
5
Cauchy combination test: a powerful test with analytic -value calculation under arbitrary dependency structures.
J Am Stat Assoc. 2020;115(529):393-402. doi: 10.1080/01621459.2018.1554485. Epub 2019 Apr 25.
6
Universal inference.
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):16880-16890. doi: 10.1073/pnas.1922664117. Epub 2020 Jul 6.
7
From reads to insight: a hitchhiker's guide to ATAC-seq data analysis.
Genome Biol. 2020 Feb 3;21(1):22. doi: 10.1186/s13059-020-1929-3.
8
Single-cell biology: beyond the sum of its parts.
Nat Methods. 2020 Jan;17(1):17-20. doi: 10.1038/s41592-019-0693-3.
9
Single-cell multimodal omics: the power of many.
Nat Methods. 2020 Jan;17(1):11-14. doi: 10.1038/s41592-019-0691-5.
10
Beyond bulk: a review of single cell transcriptomics methodologies and applications.
Curr Opin Biotechnol. 2019 Aug;58:129-136. doi: 10.1016/j.copbio.2019.03.001. Epub 2019 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验