Suppr超能文献

高维数据的渐近无分布独立性检验

Asymptotic Distribution-Free Independence Test for High Dimension Data.

作者信息

Cai Zhanrui, Lei Jing, Roeder Kathryn

机构信息

Faculty of Business and Economics, The University of Hong Kong.

Department of Statistics and Data Science, Carnegie Mellon University.

出版信息

J Am Stat Assoc. 2024;119(547):1794-1804. doi: 10.1080/01621459.2023.2218030. Epub 2023 Dec 21.

Abstract

Test of independence is of fundamental importance in modern data analysis, with broad applications in variable selection, graphical models, and causal inference. When the data is high dimensional and the potential dependence signal is sparse, independence testing becomes very challenging without distributional or structural assumptions. In this paper, we propose a general framework for independence testing by first fitting a classifier that distinguishes the joint and product distributions, and then testing the significance of the fitted classifier. This framework allows us to borrow the strength of the most advanced classification algorithms developed from the modern machine learning community, making it applicable to high dimensional, complex data. By combining a sample split and a fixed permutation, our test statistic has a universal, fixed Gaussian null distribution that is independent of the underlying data distribution. Extensive simulations demonstrate the advantages of the newly proposed test compared with existing methods. We further apply the new test to a single cell data set to test the independence between two types of single cell sequencing measurements, whose high dimensionality and sparsity make existing methods hard to apply.

摘要

独立性检验在现代数据分析中至关重要,在变量选择、图形模型和因果推断等方面有广泛应用。当数据是高维的且潜在的依赖信号稀疏时,在没有分布或结构假设的情况下,独立性检验变得非常具有挑战性。在本文中,我们提出了一个用于独立性检验的通用框架,首先拟合一个区分联合分布和乘积分布的分类器,然后检验拟合分类器的显著性。这个框架使我们能够借助现代机器学习社区开发的最先进分类算法的优势,使其适用于高维、复杂的数据。通过结合样本分割和固定排列,我们的检验统计量具有通用的、固定的高斯零分布,该分布与基础数据分布无关。大量模拟表明,新提出的检验方法与现有方法相比具有优势。我们进一步将新检验应用于一个单细胞数据集,以检验两种单细胞测序测量之间的独立性,其高维度和稀疏性使得现有方法难以应用。

相似文献

1
Asymptotic Distribution-Free Independence Test for High Dimension Data.高维数据的渐近无分布独立性检验
J Am Stat Assoc. 2024;119(547):1794-1804. doi: 10.1080/01621459.2023.2218030. Epub 2023 Dec 21.
2
Model-free prediction test with application to genomics data.无模型预测检验及其在基因组学数据中的应用。
Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2205518119. doi: 10.1073/pnas.2205518119. Epub 2022 Aug 15.
3
Nonparametric Causal Structure Learning in High Dimensions.高维非参数因果结构学习
Entropy (Basel). 2022 Feb 28;24(3):351. doi: 10.3390/e24030351.
4
7
Joint Learning of Multiple Sparse Matrix Gaussian Graphical Models.联合学习多个稀疏矩阵高斯图模型。
IEEE Trans Neural Netw Learn Syst. 2015 Nov;26(11):2606-20. doi: 10.1109/TNNLS.2014.2384201. Epub 2015 Mar 4.

本文引用的文献

1
scMoC: single-cell multi-omics clustering.scMoC:单细胞多组学聚类
Bioinform Adv. 2022 Feb 15;2(1):vbac011. doi: 10.1093/bioadv/vbac011. eCollection 2022.
2
Model-free prediction test with application to genomics data.无模型预测检验及其在基因组学数据中的应用。
Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2205518119. doi: 10.1073/pnas.2205518119. Epub 2022 Aug 15.
3
Causal discoveries for high dimensional mixed data.高维混合数据的因果发现。
Stat Med. 2022 Oct 30;41(24):4924-4940. doi: 10.1002/sim.9544. Epub 2022 Aug 15.
4
6
Universal inference.普遍推断。
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):16880-16890. doi: 10.1073/pnas.1922664117. Epub 2020 Jul 6.
8
Single-cell biology: beyond the sum of its parts.单细胞生物学:超越其各部分之和。
Nat Methods. 2020 Jan;17(1):17-20. doi: 10.1038/s41592-019-0693-3.
9
Single-cell multimodal omics: the power of many.单细胞多组学:众多个体的力量。
Nat Methods. 2020 Jan;17(1):11-14. doi: 10.1038/s41592-019-0691-5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验