文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多步、单分子纳米孔对长蛋白链的读取。

Multi-pass, single-molecule nanopore reading of long protein strands.

机构信息

Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.

Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.

出版信息

Nature. 2024 Sep;633(8030):662-669. doi: 10.1038/s41586-024-07935-7. Epub 2024 Sep 11.


DOI:10.1038/s41586-024-07935-7
PMID:39261738
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11410661/
Abstract

The ability to sequence single protein molecules in their native, full-length form would enable a more comprehensive understanding of proteomic diversity. Current technologies, however, are limited in achieving this goal. Here, we establish a method for the long-range, single-molecule reading of intact protein strands on a commercial nanopore sensor array. By using the ClpX unfoldase to ratchet proteins through a CsgG nanopore, we provide single-molecule evidence that ClpX translocates substrates in two-residue steps. This mechanism achieves sensitivity to single amino acids on synthetic protein strands hundreds of amino acids in length, enabling the sequencing of combinations of single-amino-acid substitutions and the mapping of post-translational modifications, such as phosphorylation. To enhance classification accuracy further, we demonstrate the ability to reread individual protein molecules multiple times, and we explore the potential for highly accurate protein barcode sequencing. Furthermore, we develop a biophysical model that can simulate raw nanopore signals a priori on the basis of residue volume and charge, enhancing the interpretation of raw signal data. Finally, we apply these methods to examine full-length, folded protein domains for complete end-to-end analysis. These results provide proof of concept for a platform that has the potential to identify and characterize full-length proteoforms at single-molecule resolution.

摘要

能够以其天然全长形式对单个蛋白质分子进行测序,将使我们能够更全面地了解蛋白质组的多样性。然而,目前的技术在实现这一目标方面存在局限性。在这里,我们在商业纳米孔传感器阵列上建立了一种用于长程、单分子读取完整蛋白质链的方法。通过使用 ClpX 解旋酶将蛋白质通过 CsgG 纳米孔棘轮化,我们提供了单分子证据,证明 ClpX 以两个残基的步骤转运底物。这种机制在数百个氨基酸长的合成蛋白质链上实现了对单个氨基酸的敏感性,从而能够对单个氨基酸取代的组合进行测序,并对翻译后修饰(如磷酸化)进行作图。为了进一步提高分类准确性,我们展示了多次重读数个单个蛋白质分子的能力,并探索了高度准确的蛋白质条形码测序的潜力。此外,我们开发了一种生物物理模型,该模型可以根据残基体积和电荷预先模拟原始纳米孔信号,从而增强对原始信号数据的解释。最后,我们应用这些方法来检查全长折叠蛋白质结构域,以进行完整的端到端分析。这些结果为一个平台提供了概念验证,该平台有可能以单分子分辨率识别和表征全长蛋白质异构体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/74d4cce99583/41586_2024_7935_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/cd844b723bb1/41586_2024_7935_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/cb0c117994c6/41586_2024_7935_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/bfadec0c8dcc/41586_2024_7935_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/11ef43d1dd72/41586_2024_7935_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/a861adfc810b/41586_2024_7935_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/0d9a704bae7b/41586_2024_7935_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/6ab44a58d83a/41586_2024_7935_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/51ae71b8aed3/41586_2024_7935_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/b3a1cbaf28ab/41586_2024_7935_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/65f72247f69f/41586_2024_7935_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/e9dd7236fc04/41586_2024_7935_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/70c4a07bed11/41586_2024_7935_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/3814494908e5/41586_2024_7935_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/f022419cd27e/41586_2024_7935_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/67886507fb4f/41586_2024_7935_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/74d4cce99583/41586_2024_7935_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/cd844b723bb1/41586_2024_7935_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/cb0c117994c6/41586_2024_7935_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/bfadec0c8dcc/41586_2024_7935_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/11ef43d1dd72/41586_2024_7935_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/a861adfc810b/41586_2024_7935_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/0d9a704bae7b/41586_2024_7935_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/6ab44a58d83a/41586_2024_7935_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/51ae71b8aed3/41586_2024_7935_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/b3a1cbaf28ab/41586_2024_7935_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/65f72247f69f/41586_2024_7935_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/e9dd7236fc04/41586_2024_7935_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/70c4a07bed11/41586_2024_7935_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/3814494908e5/41586_2024_7935_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/f022419cd27e/41586_2024_7935_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/67886507fb4f/41586_2024_7935_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fb/11410661/74d4cce99583/41586_2024_7935_Fig16_ESM.jpg

相似文献

[1]
Multi-pass, single-molecule nanopore reading of long protein strands.

Nature. 2024-9

[2]
Multi-pass, single-molecule nanopore reading of long protein strands with single-amino acid sensitivity.

bioRxiv. 2023-10-20

[3]
Discrimination among protein variants using an unfoldase-coupled nanopore.

ACS Nano. 2014-12-8

[4]
Unfoldase-mediated protein translocation through an α-hemolysin nanopore.

Nat Biotechnol. 2013-2-3

[5]
Unfolding and Translocation of Proteins Through an Alpha-Hemolysin Nanopore by ClpXP.

Methods Mol Biol. 2021

[6]
Multiple rereads of single proteins at single-amino acid resolution using nanopores.

Science. 2021-12-17

[7]
Solid-State Quad-Nanopore Array for High-Resolution Single-Molecule Analysis and Discrimination.

Adv Mater. 2023-6

[8]
Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.

Acc Chem Res. 2018-1-24

[9]
MoS nanopore identifies single amino acids with sub-1 Dalton resolution.

Nat Commun. 2023-5-20

[10]
Discriminating Residue Substitutions in a Single Protein Molecule Using a Sub-nanopore.

ACS Nano. 2017-6-2

引用本文的文献

[1]
The Potential of Nanopore Technologies in Peptide and Protein Sensing for Biomarker Detection.

Biosensors (Basel). 2025-8-16

[2]
Plasma-Derived Extracellular Vesicle Proteomics.

J Proteome Res. 2025-8-8

[3]
Is single-molecule protein sequencing here yet?

Nat Methods. 2025-8

[4]
From data to discovery: leveraging big data in plant natural products biosynthesis research.

Plant J. 2025-6

[5]
Protein Sequencing with Single Amino Acid Resolution Discerns Peptides That Discriminate Tropomyosin Proteoforms.

J Proteome Res. 2025-6-10

[6]
Direct detection of 8-oxo-dG using nanopore sequencing.

Nat Commun. 2025-6-5

[7]
Targeting mitochondrial ClpP: structural insights and therapeutic potential of ClpP agonists in cancer therapy.

Oncol Rev. 2025-5-6

[8]
Long-read sequencing for diagnosis of genetic myopathies.

BMJ Neurol Open. 2025-5-11

[9]
A series of reviews in familial cancer: genetic cancer risk in context variants of uncertain significance in MMR genes: which procedures should be followed?

Fam Cancer. 2025-5-3

[10]
Nanopore Environmental Analysis.

JACS Au. 2025-4-1

本文引用的文献

[1]
Full-Length Single Protein Molecules Tracking and Counting in Thin Silicon Channels.

Adv Mater. 2024-6

[2]
Nanopore DNA sequencing technologies and their applications towards single-molecule proteomics.

Nat Chem. 2024-3

[3]
Author Correction: Unidirectional single-file transport of full-length proteins through a nanopore.

Nat Biotechnol. 2023-10

[4]
Enzyme-less nanopore detection of post-translational modifications within long polypeptides.

Nat Nanotechnol. 2023-11

[5]
Detection of phosphorylation post-translational modifications along single peptides with nanopores.

Nat Biotechnol. 2024-5

[6]
An atlas of substrate specificities for the human serine/threonine kinome.

Nature. 2023-1

[7]
Real-time dynamic single-molecule protein sequencing on an integrated semiconductor device.

Science. 2022-10-14

[8]
Quantification of Protein Glycosylation Using Nanopores.

Nano Lett. 2022-7-13

[9]
Controlled movement of ssDNA conjugated peptide through porin A (MspA) nanopore by a helicase motor for peptide sequencing application.

Chem Sci. 2021-11-12

[10]
Bottom-up fabrication of a proteasome-nanopore that unravels and processes single proteins.

Nat Chem. 2021-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索