Suppr超能文献

盐诱导的甲基纤维素 LCST 型热凝胶化:通过涨落理论量化非特异性相互作用。

Salt-induced LCST-type thermal gelation of methylcellulose: quantifying non-specific interactions via fluctuation theory.

机构信息

Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan.

York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.

出版信息

Phys Chem Chem Phys. 2020 Jul 22;22(28):15999-16006. doi: 10.1039/d0cp01687j.

Abstract

What drives the phase separation of water-soluble polymers in the presence of electrolytes was quantified on a molecular scale via statistical thermodynamic fluctuation theory. Quantifying polymer-water and polymer-salt interactions enabled us to identify the dominant interaction for phase separation. As a model system, the lower critical solution temperature (LCST) type thermal gelation of methylcellulose (MC) in aqueous salt solutions was chosen. The Kirkwood-Buff integrals for intermolecular interactions, calculated from the published calorimetric and volumetric data, showed that (1) the accumulation of salts around MC molecules (favourable interaction between salts and MC) inhibits thermal gelation and the depletion of salts from MC (unfavourable interaction between salts and MC) promotes the gelation, and (2) this salt-MC interaction is the dominant factor (50-100 times stronger than the water-MC interaction). This insight from the fluctuation theory is at odds with the age-old consensus regarding the driving force of thermal gelation: water structure change in the presence of salts induces the promotion or inhibition of thermal gelation. However, our conclusion is founded upon the ability of the fluctuation theory to quantify water-MC and salt-MC interaction independently via the Kirkwood-Buff integrals. Flory-Huggins (FH) theory, on the contrary, could not separate these two interactions owing to the lack of a thermodynamic degree of freedom because the lattice solution is assumed to be fully packed. In addition, the dominant contribution from salt depletion poses difficulty for the χ parameter, which is essentially the difference of contact energies. Our approach, requiring calorimetric and volumetric data alone as input, provides a simple and versatile method towards elucidating the effect of cosolvents on biopolymer phase separation of physiological importance.

摘要

通过统计热力学涨落理论,从分子尺度量化了在电解质存在下水溶性聚合物相分离的驱动力。量化聚合物-水和聚合物-盐相互作用使我们能够确定相分离的主要相互作用。选择甲基纤维素(MC)在盐水溶液中的下临界溶液温度(LCST)型热凝胶化作为模型体系。从已发表的量热和体积数据计算的分子间相互作用的 Kirkwood-Buff 积分表明:(1)盐在 MC 分子周围的积累(盐与 MC 的有利相互作用)抑制热凝胶化,盐从 MC 的耗尽(盐与 MC 的不利相互作用)促进凝胶化;(2)这种盐-MC 相互作用是主要因素(比水-MC 相互作用强 50-100 倍)。这种来自涨落理论的见解与关于热凝胶化驱动力的古老共识相矛盾:盐存在下水结构的变化诱导热凝胶化的促进或抑制。然而,我们的结论是基于涨落理论通过 Kirkwood-Buff 积分能够独立量化水-MC 和盐-MC 相互作用的能力。相反,弗洛里-哈金斯(FH)理论由于缺少热力学自由度而无法分离这两种相互作用,因为假定晶格溶液完全填充。此外,盐耗尽的主要贡献给χ参数带来了困难,χ参数本质上是接触能的差异。我们的方法仅需要量热和体积数据作为输入,为阐明共溶剂对生理相关生物聚合物相分离的影响提供了一种简单而通用的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验