Biology and Genetic of the Bacterial Cell Wall Unit, Innate Immunity and Leptospira Group, Institut Pasteur, Paris, France.
Methods Mol Biol. 2020;2134:149-160. doi: 10.1007/978-1-0716-0459-5_14.
The study of pathological processes is often limited to in vitro or ex vivo assays, while understanding pathogenesis of an infectious disease requires in vivo analysis. The use of pathogens, genetically modified to express with luminescent enzymes, combined to charge-coupled device (CCD) cameras, constitutes a major technological advance for assessing the course of infection in an intact, living host in real time and in a noninvasive way. This technology, also called bioluminescence imaging, detects the photons emitted from biological sources of light through animal tissues. Here, we describe the method we developed to monitor leptospirosis in a mouse model, by following in a spatiotemporal scale, the dissemination and spread of leptospires. These bacteria have been genetically modified to express the firefly luciferase, which produces light in the presence of the substrate D-luciferin. This useful and accessible technology facilitates the study of the kinetics of blood and tissue dissemination of live leptospires, and the pharmacological impact of treatments and host directed therapeutics.
病理过程的研究通常仅限于体外或离体分析,而了解传染病的发病机制则需要体内分析。使用经过基因修饰以表达发光酶的病原体,并结合电荷耦合器件 (CCD) 相机,这是一项重大技术进步,可以实时、非侵入性地评估完整活体宿主中的感染过程。该技术也称为生物发光成像,通过动物组织检测来自生物光源的光子。在这里,我们描述了我们开发的方法,通过在时空尺度上监测,来监测小鼠模型中的钩端螺旋体病,以监测钩端螺旋体的传播和扩散。这些细菌经过基因修饰以表达萤火虫荧光素酶,该酶在存在底物 D-荧光素的情况下产生光。这种有用且易于使用的技术促进了对活体钩端螺旋体在血液和组织中的传播动力学的研究,以及治疗和宿主导向治疗的药理学影响。