Safari Parvin, Moggach Stephen A, Low Paul J
School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
Dalton Trans. 2020 Jul 21;49(28):9835-9848. doi: 10.1039/d0dt01794a.
The 1,4-diethynylbenzene motif is commonly employed as a bridging ligand in bimetallic molecular systems intended to show pronounced intramolecular electronic interactions, delocalized electronic structures and 'wire-like' properties between the metal fragments at the ligand termini. In contrast to these expectations, the donor-acceptor compounds [{Cp'(CO)xM'}(μ-C[triple bond, length as m-dash]CC6H4C[triple bond, length as m-dash]C){M(PP)Cp'}]n+ [n = 0, 1; M'(CO)xCp' = Fe(CO)2Cp, W(CO)3Cp*; M(PP)Cp' = Fe(dppe)Cp, Fe(dppe)Cp*, Ru(PPh3)2Cp, Ru(dppe)Cp, Ru(dppe)Cp*] display remarkably little bridge-mediated electronic interaction between the electron-rich {M(PP)Cp'} and electron-poor {M'(CO)xCp'} fragments in the ground state. However, a relatively high-energy (26 000-30 000 cm-1) M-to-M' charge transfer can be identified. One-electron oxidation is largely localized on the {M(C[triple bond, length as m-dash]CR)(PP)Cp'} fragment and gives rise to a new charge transfer band with bridging-ligand-to-{M(PP)Cp'}+ (M'(CO)xCp' = Fe(CO)2Cp) or M'-to-M(+) (M(CO)xCp' = W(CO)3Cp*) character. The localized electronic ground state of these complexes is better revealed through analysis of the IR spectra, taking advantage of the well-resolved ν(C[triple bond, length as m-dash]C) and ν(CO) bands and IR spectroelectrochemical methods, than through the more classical analysis based on the concepts of Marcus-Hush theory and analysis of the putative IVCT electronic transition. The conclusions are supported by DFT calculations using the BLYP35 functional.
1,4 - 二乙炔基苯基团通常用作双金属分子体系中的桥连配体,这类体系旨在展现出显著的分子内电子相互作用、离域电子结构以及配体末端金属片段之间的“线状”性质。与这些预期相反,供体 - 受体化合物[{Cp'(CO)xM'}(μ - C≡CC6H4C≡C){M(PP)Cp'}]n + [n = 0, 1; M'(CO)xCp' = Fe(CO)2Cp, W(CO)3Cp*; M(PP)Cp' = Fe(dppe)Cp, Fe(dppe)Cp*, Ru(PPh3)2Cp, Ru(dppe)Cp, Ru(dppe)Cp*]在基态下,富电子的{M(PP)Cp'}片段与贫电子的{M'(CO)xCp'}片段之间几乎没有桥连介导的电子相互作用。然而,可以识别出相对高能(26000 - 30000 cm - 1)的M到M'电荷转移。单电子氧化主要定域在{M(C≡CR)(PP)Cp'}片段上,并产生一个新的电荷转移带,其具有桥连配体到{M(PP)Cp'}+(M'(CO)xCp' = Fe(CO)2Cp)或M'到M(+)(M(CO)xCp' = W(CO)3Cp*)的特征。通过利用分辨良好的ν(C≡C)和ν(CO)谱带以及红外光谱电化学方法分析红外光谱,比基于Marcus - Hush理论概念和假定的IVCT电子跃迁分析的更经典方法,能更好地揭示这些配合物的定域电子基态。这些结论得到了使用BLYP35泛函的DFT计算的支持。