Suppr超能文献

泡沫捕集游动微藻。

Trapping of swimming microalgae in foam.

机构信息

Université de Paris, CNRS UMR 7057, Laboratoire Matière et Systèmes Complexes MSC, F-75006 Paris, France.

Lab. Navier, Univ. Gustave Eiffel, ENPC, CNRS, F-77447 Marne-la-Vallée, France.

出版信息

J R Soc Interface. 2020 Jul;17(168):20200077. doi: 10.1098/rsif.2020.0077. Epub 2020 Jul 8.

Abstract

Massive foam formation in aquatic environments is a seasonal event that has a significant impact on the stability of marine ecosystems. Liquid foams are known to filter passive solid particles, with large particles remaining trapped by confinement in the network of liquid channels and small particles being freely advected by the gravity-driven flow. By contrast, the potential role of a similar retention effect on biologically active particles such as phytoplankton cells is still relatively unknown. To assess if phytoplankton cells are passively advected through a foam, the model unicellular motile alga (CR) was incorporated in a bio-compatible foam, and the number of cells escaping the foam at the bottom was measured in time. Comparing the escape dynamics of living and dead CR cells, we found that dead cells are totally advected by the liquid flow towards the bottom of the foam, as expected since the diameter of CR remains smaller than the typical foam channel diameter. By contrast, living motile CR cells escape the foam at a significantly lower rate: after 2 hours, up to 60% of the injected cells may remain blocked in the foam, while 95% of the initial liquid volume in the foam has been drained out of the foam. Microscopic observation of the swimming CR cells in a chamber mimicking the cross-section of foam internal channels revealed that swimming CR cells accumulate near channels corners. A theoretical analysis based on the probability density measurements in the micro chambers has shown that this trapping at the microscopic scale contributes to explain the macroscopic retention of the microswimmers in the foam. At the crossroads of distinct fields including marine ecology of planktonic organisms, fluid dynamics of active particles in a confined environment and the physics of foam, this work represents a significant step in the fundamental understanding of the ecological consequences of aquatic foams in water bodies.

摘要

水相中的大规模泡沫形成是一种季节性事件,对海洋生态系统的稳定性有重大影响。已知液相泡沫能够过滤被动固体颗粒,较大的颗粒由于被限制在液相通道网络中而被截留,较小的颗粒则被重力驱动的流动自由输送。相比之下,类似的截留效应对浮游植物细胞等生物活性颗粒的潜在作用仍然相对未知。为了评估浮游植物细胞是否通过泡沫被动输送,我们将模式单细胞运动藻类(CR)引入生物相容性泡沫中,并在时间上测量从泡沫底部逸出的细胞数量。通过比较活细胞和死细胞 CR 的逸出动力学,我们发现死细胞完全被液体流动输送到泡沫底部,这是预期的,因为 CR 的直径仍然小于典型的泡沫通道直径。相比之下,运动的活 CR 细胞从泡沫中逸出的速度明显较慢:2 小时后,多达 60%的注入细胞可能仍被阻挡在泡沫中,而泡沫中 95%的初始液体体积已被排出泡沫。在模拟泡沫内部通道横截面的微室中观察游动的 CR 细胞的微观观察表明,游动的 CR 细胞在通道角落附近积聚。基于微室中概率密度测量的理论分析表明,这种微观尺度的捕获有助于解释微观游泳者在泡沫中的宏观保留。这项工作在浮游生物的海洋生态学、受限环境中活性颗粒的流体动力学以及泡沫物理学等不同领域的交叉点上,代表了对水体中水生泡沫的生态后果的基本理解的重要一步。

相似文献

1
Trapping of swimming microalgae in foam.泡沫捕集游动微藻。
J R Soc Interface. 2020 Jul;17(168):20200077. doi: 10.1098/rsif.2020.0077. Epub 2020 Jul 8.
6
Microalgae Scatter off Solid Surfaces by Hydrodynamic and Contact Forces.微藻通过流体动力和接触力从固体表面散射出去。
Phys Rev Lett. 2015 Dec 18;115(25):258102. doi: 10.1103/PhysRevLett.115.258102. Epub 2015 Dec 17.
9
Diurnal Variations in the Motility of Populations of Biflagellate Microalgae.昼夜变化对双鞭毛微藻种群运动性的影响。
Biophys J. 2020 Nov 17;119(10):2055-2062. doi: 10.1016/j.bpj.2020.10.006. Epub 2020 Oct 20.
10

本文引用的文献

3
Curvature-Guided Motility of Microalgae in Geometric Confinement.几何约束条件下微藻的曲率引导运动
Phys Rev Lett. 2018 Feb 9;120(6):068002. doi: 10.1103/PhysRevLett.120.068002.
6
Predominance of sperm motion in corners.精子在角落处的运动优势。
Sci Rep. 2016 May 23;6:26669. doi: 10.1038/srep26669.
8
The drainage of foamy granular suspensions.泡沫颗粒悬浮液的引流
J Colloid Interface Sci. 2015 Nov 15;458:200-8. doi: 10.1016/j.jcis.2015.07.051. Epub 2015 Jul 23.
10
Ciliary contact interactions dominate surface scattering of swimming eukaryotes.纤毛接触相互作用主导着游动真核生物的表面散射。
Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1187-92. doi: 10.1073/pnas.1210548110. Epub 2013 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验