Yang Fan, Ma Shaojie, Ding Kun, Zhang Shuang, Pendry J B
The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom;
School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom.
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):16739-16742. doi: 10.1073/pnas.2003171117. Epub 2020 Jul 7.
Metal and dielectric have long been thought as two different states of matter possessing highly contrasting electric and optical properties. A metal is a material highly reflective to electromagnetic waves for frequencies up to the optical region. In contrast, a dielectric is transparent to electromagnetic waves. These two different classical electrodynamic properties are distinguished by different signs of the real part of permittivity: The metal has a negative sign while the dielectric has a positive one. Here, we propose a different topological understanding of metal and dielectric. By considering metal and dielectric as just two limiting cases of a periodic metal-dielectric layered metamaterial, from which a metal can continuously transform into a dielectric by varying the metal filling ratio from 1 to 0, we further demonstrate the abrupt change of a topological invariant at a certain point during this transition, classifying the metamaterials into metallic state and dielectric state. The topological phase transition from the metallic state to the dielectric state occurs when the filling ratio is one-half. These two states generalize our previous understanding of metal and dielectric: The metamaterial with metal filling ratio larger/smaller than one-half is named as the "generalized metal/dielectric." Interestingly, the surface plasmon polariton (SPP) at a metal/dielectric interface can be understood as the limiting case of a topological edge state.
长期以来,金属和电介质一直被视为两种不同的物质状态,具有截然不同的电学和光学性质。金属是一种对频率高达光学区域的电磁波具有高反射性的材料。相比之下,电介质对电磁波是透明的。这两种不同的经典电动力学性质通过介电常数实部的不同符号来区分:金属的介电常数实部为负,而电介质的为正。在此,我们提出一种对金属和电介质的不同拓扑理解。通过将金属和电介质视为周期性金属 - 电介质层状超材料的两种极限情况,其中金属可以通过将金属填充率从1变化到0而连续转变为电介质,我们进一步证明了在此转变过程中某一点拓扑不变量的突然变化,从而将超材料分为金属态和电介质态。当填充率为二分之一时,发生从金属态到电介质态的拓扑相变。这两种状态拓展了我们之前对金属和电介质的理解:金属填充率大于/小于二分之一的超材料分别被称为“广义金属/电介质”。有趣的是,金属/电介质界面处的表面等离激元极化激元(SPP)可以被理解为拓扑边缘态的极限情况。