Suppr超能文献

脓毒症的血浆肽

The plasma peptides of sepsis.

作者信息

Thavarajah Thanusi, Dos Santos Claudia C, Slutsky Arthur S, Marshall John C, Bowden Pete, Romaschin Alexander, Marshall John G

机构信息

Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada.

St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada.

出版信息

Clin Proteomics. 2020 Jul 2;17:26. doi: 10.1186/s12014-020-09288-5. eCollection 2020.

Abstract

BACKGROUND

A practical strategy to discover sepsis specific proteins may be to compare the plasma peptides and proteins from patients in the intensive care unit with and without sepsis. The aim was to discover proteins and/or peptides that show greater observation frequency and/or precursor intensity in sepsis. The endogenous tryptic peptides of ICU-Sepsis were compared to ICU Control, ovarian cancer, breast cancer, female normal, sepsis, heart attack, Alzheimer's and multiple sclerosis along with their institution-matched controls, female normals and normal samples collected directly onto ice.

METHODS

Endogenous tryptic peptides were extracted from individual sepsis and control EDTA plasma samples in a step gradient of acetonitrile for random and independent sampling by LC-ESI-MS/MS with a set of robust and sensitive linear quadrupole ion traps. The MS/MS spectra were fit to fully tryptic peptides within proteins using the X!TANDEM algorithm. The protein observation frequency was counted using the SEQUEST algorithm after selecting the single best charge state and peptide sequence for each MS/MS spectra. The protein observation frequency of ICU-sepsis versus ICU Control was subsequently tested by Chi square analysis. The average protein or peptide log precursor intensity was compared across disease and control treatments by ANOVA in the R statistical system.

RESULTS

Peptides and/or phosphopeptides of common plasma proteins such as ITIH3, SAA2, SAA1, and FN1 showed increased observation frequency by Chi square (χ > 9, p < 0.003) and/or precursor intensity in sepsis. Cellular gene symbols with large Chi square values from tryptic peptides included POTEB, CTNNA1, U2SURP, KIF24, NLGN2, KSR1, GTF2H1, KIT, RPS6KL1, VAV2, HSPA7, SMC2, TCEB3B, ZNF300, SUPV3L1, ADAMTS20, LAMB4, MCCC1, SUPT6H, SCN9A, SBNO1, EPHA1, ABLIM2, cB5E3.2, EPHA10, GRIN2B, HIVEP2, CCL16, TKT, LRP2 and TMF1 amongst others showed increased observation frequency. Similarly, increased frequency of tryptic phosphopeptides were observed from POM121C, SCN8A, TMED8, NSUN7, SLX4, MADD, DNLZ, PDE3B, UTY, DEPDC7, MTX1, MYO1E, RXRB, SYDE1, FN1, PUS7L, FYCO1, USP26, ACAP2, AHI1, KSR2, LMAN1, ZNF280D and SLC8A2 amongst others. Increases in mean precursor intensity in peptides from common plasma proteins such as ITIH3, SAA2, SAA1, and FN1 as well as cellular proteins such as COL24A1, POTEB, KANK1, SDCBP2, DNAH11, ADAMTS7, MLLT1, TTC21A, TSHR, SLX4, MTCH1, and PUS7L among others were associated with sepsis. The processing of SAA1 included the cleavage of the terminal peptide D/PNHFRPAGLPEKY from the most hydrophilic point of SAA1 on the COOH side of the cystatin C binding that was most apparent in ICU-Sepsis patients compared to all other diseases and controls. Additional cleavage of SAA1 on the NH2 terminus side of the cystatin binding site were observed in ICU-Sepsis. Thus there was disease associated variation in the processing of SAA1 in ICU-Sepsis versus ICU controls or other diseases and controls.

CONCLUSION

Specific proteins and peptides that vary between diseases might be discovered by the random and independent sampling of multiple disease and control plasma from different hospital and clinics by LC-ESI-MS/MS for storage in a relational SQL Server database and analysis with the R statistical system that will be a powerful tool for clinical research. The processing of SAA1 may play an unappreciated role in the inflammatory response to Sepsis.

摘要

背景

发现脓毒症特异性蛋白质的一种实用策略可能是比较重症监护病房中有脓毒症和无脓毒症患者的血浆肽和蛋白质。目的是发现脓毒症中观察频率更高和/或前体强度更高的蛋白质和/或肽。将重症监护病房脓毒症患者的内源性胰蛋白酶肽与重症监护病房对照、卵巢癌、乳腺癌、女性正常样本、脓毒症、心脏病发作、阿尔茨海默病和多发性硬化症患者及其机构匹配的对照、女性正常样本以及直接收集在冰上的正常样本进行比较。

方法

从个体脓毒症和对照EDTA血浆样本中提取内源性胰蛋白酶肽,采用乙腈梯度洗脱,通过液相色谱-电喷雾串联质谱(LC-ESI-MS/MS)进行随机独立采样,使用一组强大且灵敏的线性四极杆离子阱。使用X!TANDEM算法将串联质谱图与蛋白质内的完全胰蛋白酶肽进行匹配。在为每个串联质谱图选择单一最佳电荷状态和肽序列后,使用SEQUEST算法计算蛋白质观察频率。随后通过卡方分析测试重症监护病房脓毒症患者与重症监护病房对照的蛋白质观察频率。在R统计系统中,通过方差分析比较不同疾病和对照处理下蛋白质或肽的平均前体强度对数。

结果

常见血浆蛋白如ITIH3、SAA2、SAA1和FN1的肽和/或磷酸肽在脓毒症中通过卡方检验显示观察频率增加(χ>9,p<0.003)和/或前体强度增加。来自胰蛋白酶肽且卡方值较大的细胞基因符号包括POTEB、CTNNA1、U2SURP、KIF24、NLGN2、KSR1、GTF2H1、KIT、RPS6KL1、VAV2、HSPA7、SMC2、TCEB3B、ZNF300、SUPV3L1、ADAMTS20、LAMB4、MCCC1、SUPT6H、SCN9A、SBNO1、EPHA1、ABLIM2、cB5E3.2、EPHA10、GRIN2B、HIVEP2、CCL16、TKT、LRP2和TMF1等,观察频率增加。同样,在POM121C、SCN8A、TMED8、NSUN7、SLX4、MADD、DNLZ、PDE3B、UTY、DEPDC7、MTX1、MYO1E、RXRB、SYDE1、FN1、PUS7L、FYCO1、USP26、ACAP2、AHI1、KSR2、LMAN1、ZNF280D和SLC8A2等中观察到胰蛋白酶磷酸肽频率增加。常见血浆蛋白如ITIH3、SAA2、SAA1和FN1以及细胞蛋白如COL24A1、POTEB、KANK1、SDCBP2、DNAH11、ADAMTS7、MLLT1、TTC21A、TSHR、SLX4、MTCH1和PUS7L等的肽平均前体强度增加与脓毒症相关。SAA1的加工包括从胱抑素C结合位点COOH侧SAA1最亲水点切割末端肽D/PNHFRPAGLPEKY,与所有其他疾病和对照相比,这在重症监护病房脓毒症患者中最为明显。在重症监护病房脓毒症患者中观察到胱抑素结合位点NH2末端侧的SAA1额外切割。因此,在重症监护病房脓毒症患者与重症监护病房对照或其他疾病和对照之间,SAA1的加工存在疾病相关差异。

结论

通过LC-ESI-MS/MS对来自不同医院和诊所的多种疾病和对照血浆进行随机独立采样,存储在关系型SQL Server数据库中,并使用R统计系统进行分析,可能发现疾病间差异的特异性蛋白质和肽,这将成为临床研究的有力工具。SAA1的加工可能在脓毒症的炎症反应中发挥未被重视的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69f9/7331219/7253c880d138/12014_2020_9288_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验