Hwang Sooyeon, Ji Xiao, Bak Seong-Min, Sun Ke, Bai Jianming, Fan Xiulin, Gan Hong, Wang Chunsheng, Su Dong
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States.
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States.
ACS Nano. 2020 Aug 25;14(8):10276-10283. doi: 10.1021/acsnano.0c03714. Epub 2020 Jul 20.
Metal fluorides present a high redox potential among the conversion-type compounds, which make them specially work as cathode materials of lithium ion batteries. To mitigate the notorious cycling instability of conversion-type materials, substitutions of anion and cation have been proposed but the role of foreign elements in reaction pathway is not fully assessed. In this work, we explored the lithiation pathway of a rutile-FeCoOF cathode with multimodal analysis, including and transmission electron microscopy and synchrotron X-ray techniques. Our work revealed a prolonged intercalation-extrusion-cation disordering process during phase transformations from the rutile phase to rocksalt phase, which microscopically corresponds to topotactic rearrangement of Fe/Co-O/F octahedra. During this process, the diffusion channels of lithium transformed from 3D to 2D while the corner-sharing octahedron changed to edge-sharing octahedron. DFT calculations indicate that the Co and O cosubstitution of the FeCoOF cathode can improve its structural stability by stabilizing the thermodynamic semistable phases and reducing the thermodynamic potentials. We anticipate that our study will inspire further explorations on untraditional intercalation systems for secondary battery applications.
在转换型化合物中,金属氟化物具有较高的氧化还原电位,这使得它们特别适合用作锂离子电池的阴极材料。为了缓解转换型材料臭名昭著的循环不稳定性,人们提出了阴离子和阳离子取代的方法,但外来元素在反应路径中的作用尚未得到充分评估。在这项工作中,我们通过多模态分析,包括透射电子显微镜和同步加速器X射线技术,探索了金红石型FeCoOF阴极的锂化途径。我们的工作揭示了在从金红石相到岩盐相的相变过程中,存在一个延长的嵌入-脱出-阳离子无序过程,这在微观上对应于Fe/Co-O/F八面体的拓扑重排。在此过程中,锂的扩散通道从三维转变为二维,同时共角八面体转变为共边八面体。密度泛函理论计算表明,FeCoOF阴极的Co和O共取代可以通过稳定热力学亚稳相和降低热力学势来提高其结构稳定性。我们预计,我们的研究将激发对用于二次电池应用的非传统嵌入系统的进一步探索。