Suppr超能文献

基于多注意力机制的多变量时间序列监督特征选择方法。

A Multiattention-Based Supervised Feature Selection Method for Multivariate Time Series.

机构信息

School of Information, Zhejiang Sci-Tech University, Hangzhou, China.

School of Computer Science and Engineering, Central South University, Changsha, China.

出版信息

Comput Intell Neurosci. 2021 Jul 20;2021:6911192. doi: 10.1155/2021/6911192. eCollection 2021.

Abstract

Feature selection is a known technique to preprocess the data before performing any data mining task. In multivariate time series (MTS) prediction, feature selection needs to find both the most related variables and their corresponding delays. Both aspects, to a certain extent, represent essential characteristics of system dynamics. However, the variable and delay selection for MTS is a challenging task when the system is nonlinear and noisy. In this paper, a multiattention-based supervised feature selection method is proposed. It translates the feature weight generation problem into a bidirectional attention generation problem with two parallel placed attention modules. The input 2D data are sliced into 1D data from two orthogonal directions, and each attention module generates attention weights from their respective dimensions. To facilitate the feature selection from the global perspective, we proposed a global weight generation method that calculates a dot product operation on the weight values of the two dimensions. To avoid the disturbance of attention weights due to noise and duplicated features, the final feature weight matrix is calculated based on the statistics of the entire training set. Experimental results show that this proposed method achieves the best performance on compared synthesized, small, medium, and practical industrial datasets, compared to several state-of-the-art baseline feature selection methods.

摘要

特征选择是在执行任何数据挖掘任务之前预处理数据的一种已知技术。在多元时间序列 (MTS) 预测中,特征选择需要同时找到最相关的变量及其相应的延迟。这两个方面在某种程度上都代表了系统动态的基本特征。然而,当系统是非线性和嘈杂时,MTS 的变量和延迟选择是一项具有挑战性的任务。在本文中,提出了一种基于多注意力的监督特征选择方法。它将特征权重生成问题转化为具有两个平行放置的注意力模块的双向注意力生成问题。输入的 2D 数据从两个正交方向被切片成 1D 数据,每个注意力模块从各自的维度生成注意力权重。为了便于从全局角度进行特征选择,我们提出了一种全局权重生成方法,该方法在两个维度的权重值上进行点积运算。为了避免由于噪声和重复特征而导致注意力权重的干扰,最终的特征权重矩阵是基于整个训练集的统计数据计算的。实验结果表明,与几种最先进的基线特征选择方法相比,该方法在比较综合的、小的、中等的和实际工业数据集上取得了最佳性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/810d/8318748/1f2460581e3b/CIN2021-6911192.001.jpg

相似文献

1
A Multiattention-Based Supervised Feature Selection Method for Multivariate Time Series.
Comput Intell Neurosci. 2021 Jul 20;2021:6911192. doi: 10.1155/2021/6911192. eCollection 2021.
2
Discriminative semi-supervised feature selection via manifold regularization.
IEEE Trans Neural Netw. 2010 Jul;21(7):1033-47. doi: 10.1109/TNN.2010.2047114. Epub 2010 Jun 21.
3
Is Single Enough? A Joint Spatiotemporal Feature Learning Framework for Multivariate Time Series Prediction.
IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):4985-4998. doi: 10.1109/TNNLS.2022.3216107. Epub 2024 Apr 4.
4
A neurodynamic optimization approach to supervised feature selection via fractional programming.
Neural Netw. 2021 Apr;136:194-206. doi: 10.1016/j.neunet.2021.01.004. Epub 2021 Jan 14.
5
Adaptive Semi-Supervised Classifier Ensemble for High Dimensional Data Classification.
IEEE Trans Cybern. 2019 Feb;49(2):366-379. doi: 10.1109/TCYB.2017.2761908. Epub 2017 Oct 26.
6
A filter feature selection method based on the Maximal Information Coefficient and Gram-Schmidt Orthogonalization for biomedical data mining.
Comput Biol Med. 2017 Oct 1;89:264-274. doi: 10.1016/j.compbiomed.2017.08.021. Epub 2017 Aug 24.
7
Budget constrained non-monotonic feature selection.
Neural Netw. 2015 Nov;71:214-24. doi: 10.1016/j.neunet.2015.08.004. Epub 2015 Sep 4.
8
Optimized Mahalanobis-Taguchi System for High-Dimensional Small Sample Data Classification.
Comput Intell Neurosci. 2020 Apr 26;2020:4609423. doi: 10.1155/2020/4609423. eCollection 2020.
9
A Hybrid Feature Selection Method Based on Binary State Transition Algorithm and ReliefF.
IEEE J Biomed Health Inform. 2019 Sep;23(5):1888-1898. doi: 10.1109/JBHI.2018.2872811. Epub 2018 Sep 28.
10
Supervised, Unsupervised, and Semi-Supervised Feature Selection: A Review on Gene Selection.
IEEE/ACM Trans Comput Biol Bioinform. 2016 Sep-Oct;13(5):971-989. doi: 10.1109/TCBB.2015.2478454. Epub 2015 Sep 14.

本文引用的文献

1
Modified BBO-Based Multivariate Time-Series Prediction System With Feature Subset Selection and Model Parameter Optimization.
IEEE Trans Cybern. 2022 Apr;52(4):2163-2173. doi: 10.1109/TCYB.2020.2977375. Epub 2022 Apr 5.
2
Feature selection based multivariate time series forecasting: An application to antibiotic resistance outbreaks prediction.
Artif Intell Med. 2020 Apr;104:101818. doi: 10.1016/j.artmed.2020.101818. Epub 2020 Feb 19.
3
Minimum redundancy maximum relevance feature selection approach for temporal gene expression data.
BMC Bioinformatics. 2017 Jan 3;18(1):9. doi: 10.1186/s12859-016-1423-9.
4
Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy.
IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38. doi: 10.1109/TPAMI.2005.159.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验