Suppr超能文献

工作环境与健康研究中的横断面数据问题。

Problems with cross-sectional data in research on working environment and health.

作者信息

Ostlin P, Thorslund M

机构信息

Department of Social Medicine, University Hospital, Uppsala, Sweden.

出版信息

Scand J Soc Med. 1988;16(3):139-43. doi: 10.1177/140349488801600303.

Abstract

Occupational turnover due to health related selection might introduce a bias in cross-sectional studies that tends to mask real occupational health effects. People could have changed occupation so that they, when disease occurs and/or the data collection is accomplished, are working in an environment that is irrelevant for the disease in question. The aim of this study was to determine whether there is any difference in morbidity between 'stable' workers and 'changers'. Occurrence of long-term illness was studied on four exposure levels, defined according to the physical demands at work. The study populations comprised 10,487 men and 10,058 women between 25 to 74 years of age, who were interviewed within the scope of the Statistics Sweden Survey of Living Conditions in the years 1977 and 1979-81. Considerable differences in health outcomes were found between stable workers and changers, especially when considering the degree of physical strain at work. Thus, the findings indicate the necessity of detailed recording of occupational histories within the framework of cross-sectional studies, especially when the aim of the investigation is to study and compare health outcomes for workers in occupations with different turnover rates.

摘要

与健康相关的选择导致的职业流动可能会在横断面研究中引入偏差,这种偏差往往会掩盖实际的职业健康影响。人们可能会更换职业,以至于在疾病发生时和/或数据收集完成时,他们所从事的工作环境与所讨论的疾病无关。本研究的目的是确定“稳定”工人和“换岗者”在发病率上是否存在差异。根据工作中的体力需求定义了四个暴露水平,研究了长期疾病的发生情况。研究人群包括10487名男性和10058名女性,年龄在25至74岁之间,他们在1977年以及1979 - 1981年瑞典统计局生活条件调查范围内接受了访谈。在稳定工人和换岗者之间发现了健康结果方面的显著差异,尤其是在考虑工作中的体力劳损程度时。因此,研究结果表明在横断面研究框架内详细记录职业史的必要性,特别是当调查目的是研究和比较不同流动率职业的工人的健康结果时。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验