Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.
Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi, Taiwan.
J Virol. 2020 Aug 31;94(18). doi: 10.1128/JVI.01143-20.
The Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded open reading frame 50 (ORF50) protein is the key transactivator responsible for the latent-to-lytic switch. Here, we investigated the transcriptional activation of the ORF56 gene (encoding a primase protein) by ORF50 and successfully identified an ORF50-responsive element located in the promoter region between positions -97 and -44 (designated 56p-RE). This 56p-RE element contains a noncanonical RBP-Jκ-binding sequence and a nonconsensus Sp1/Sp3-binding sequence. Electrophoretic mobility shift assays revealed that RBP-Jκ, Sp3, and ORF50 could form stable complexes on the 56p-RE element. Importantly, transient-reporter analysis showed that Sp3, but not RBP-Jκ or Sp1, acts in synergy with ORF50 to activate the 56p-RE-containing reporter construct, and the synergy mainly depends on the Sp1/Sp3-binding region of the 56p-RE element. Sequence similarity searches revealed that the promoters for ORF21 (thymidine kinase), ORF60 (ribonucleotide reductase, small subunit), and cellular interleukin-10 (IL-10) contain a sequence motif similar to the Sp1/Sp3-binding region of the 56p-RE element, and we found that these promoters could also be synergistically activated by ORF50 and Sp3 via the conserved motifs. Noteworthily, the conversion of the Sp1/Sp3-binding sequence of the 56p-RE element into a consensus high-affinity Sp-binding sequence completely lost the synergistic response to ORF50 and Sp3. Moreover, transcriptional synergy could not be detected through other ORF50-responsive elements from the viral PAN, K12, ORF57, and K6 promoters. Collectively, the results of our study demonstrate that ORF50 and Sp3 can act in synergy on the transcription of specific gene promoters, and we find a novel conserved -acting motif in these promoters essential for transcriptional synergy. Despite the critical role of ORF50 in the KSHV latent-to-lytic switch, the molecular mechanism by which ORF50 activates its downstream target genes, especially those that encode the viral DNA replication enzymes, is not yet fully understood. Here, we find that ORF50 can cooperate with Sp3 to synergistically activate promoters of the viral ORF56 (primase), ORF21 (thymidine kinase), and ORF60 (ribonucleotide reductase) genes via similar Sp1/Sp3-binding motifs. Additionally, the same synergistic effect can be seen on the promoter of the cellular IL-10 gene. Overall, our data reveal an important role for Sp3 in ORF50-mediated transactivation, and we propose a new subclass of ORF50-responsive elements in viral and cellular promoters.
卡波氏肉瘤相关疱疹病毒(KSHV)编码的开放阅读框 50(ORF50)蛋白是负责潜伏到裂解转换的关键反式激活因子。在这里,我们研究了 ORF50 对 ORF56 基因(编码引物蛋白)的转录激活作用,并成功鉴定了位于 -97 到 -44 位之间的启动子区域中的一个 ORF50 反应元件(命名为 56p-RE)。这个 56p-RE 元件包含一个非典型的 RBP-Jκ 结合序列和一个非共识的 Sp1/Sp3 结合序列。电泳迁移率变动分析显示,RBP-Jκ、Sp3 和 ORF50 可以在 56p-RE 元件上形成稳定的复合物。重要的是,瞬时报告分析表明,Sp3 而不是 RBP-Jκ 或 Sp1 与 ORF50 协同激活含有 56p-RE 的报告构建体,并且这种协同作用主要依赖于 56p-RE 元件的 Sp1/Sp3 结合区域。序列相似性搜索显示,ORF21(胸苷激酶)、ORF60(核糖核苷酸还原酶,小亚基)和细胞白细胞介素 10(IL-10)的启动子包含与 56p-RE 元件的 Sp1/Sp3 结合区域相似的序列基序,我们发现这些启动子也可以通过保守的基序被 ORF50 和 Sp3 协同激活。值得注意的是,将 56p-RE 元件的 Sp1/Sp3 结合序列转化为具有高亲和力 Sp 结合序列会完全丧失对 ORF50 和 Sp3 的协同反应。此外,通过病毒 PAN、K12、ORF57 和 K6 启动子的其他 ORF50 反应元件无法检测到转录协同作用。总的来说,我们的研究结果表明,ORF50 和 Sp3 可以在特定基因启动子的转录中协同作用,并且我们在这些启动子中发现了一个新的保守作用基序,该基序对于转录协同作用至关重要。尽管 ORF50 在 KSHV 潜伏到裂解的转换中起着关键作用,但 ORF50 激活其下游靶基因的分子机制尚不完全清楚。在这里,我们发现 ORF50 可以通过类似的 Sp1/Sp3 结合基序与 Sp3 协同激活病毒 ORF56(引物酶)、ORF21(胸苷激酶)和 ORF60(核糖核苷酸还原酶)基因的启动子,此外,细胞 IL-10 基因的启动子也可以产生相同的协同效应。总的来说,我们的数据揭示了 Sp3 在 ORF50 介导的反式激活中的重要作用,并提出了病毒和细胞启动子中一种新的 ORF50 反应元件亚类。