Suppr超能文献

利用微波观测获得的全新平流层湿度气候数据记录

A new climate data record of upper-tropospheric humidity from microwave observations.

机构信息

Universität Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, Department of Earth Sciences, Meteorological Institute, Bundesstraße 55, 20146, Hamburg, Germany.

EUMETSAT, Eumetsat Allee 1, 64295, Darmstadt, Germany.

出版信息

Sci Data. 2020 Jul 8;7(1):218. doi: 10.1038/s41597-020-0560-1.

Abstract

We generated a new Climate Data Record (CDR) of Upper Tropospheric Humidity (UTH) based on observations from the microwave sounders Special Sensor Microwave Temperature - 2 (SSMT-2), Advanced Microwave Sounding Unit - B (AMSU-B) and Microwave Humidity Sounder (MHS). The data record covers the time period between 1994 and 2017 and provides monthly mean 183.31 ± 1 GHz brightness temperatures and derived UTH along with estimates of measurement uncertainty on a 1° × 1° latitude-longitude grid covering the tropical region (30° S to 30° N). For the UTH retrieval we introduce a new definition of UTH. Forgoing the use of the humidity Jacobian as a weighting function, it is easier to apply than the traditional definition without compromising the retrieval accuracy. The same definition can be used to derive UTH from infrared observations, allowing for a more synergistic use of infrared and microwave UTH in the future. The new UTH CDR is validated against an existing UTH data record.

摘要

我们基于微波探测器 Special Sensor Microwave Temperature - 2(SSMT-2)、先进微波探测单元 - B(AMSU-B)和微波湿度探测器(MHS)的观测数据,生成了一个新的对流层上部湿度(UTH)气候数据记录(CDR)。该数据记录涵盖了 1994 年至 2017 年的时间段,提供了每月平均 183.31±1GHz 亮度温度以及沿热带地区(南纬 30°至北纬 30°)1°×1°经纬度网格的测量不确定性估计的 UTH。对于 UTH 反演,我们引入了 UTH 的新定义。摒弃湿度雅可比矩阵作为加权函数的使用,它比传统定义更容易应用,而不会影响检索精度。同样的定义可以用于从红外观测中推导出 UTH,以便将来更协同地使用红外和微波 UTH。新的 UTH CDR 与现有的 UTH 数据记录进行了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b7/7343885/4094135cd4e3/41597_2020_560_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验