Ren Hao, Ren Xingang, Niu Kaikun, Wang Siliang, Huang Zhixiang, Wu Xianliang
Key Laboratory of Intelligent Computing & Signal Processing, Ministry of Education, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230039, China.
Phys Chem Chem Phys. 2020 Aug 14;22(30):17068-17074. doi: 10.1039/d0cp02220a. Epub 2020 Jul 9.
Metal nanoparticles associated with local surface plasmon (LSP) resonance, i.e. highly confined electric field and large scattering cross-sections (σ), have been widely used to enhance the light-harvesting of solar cells toward high optoelectronic performance. However, the metal nanoparticles embedded into the solar cells suffer from parasitic ohmic loss that subsequently causes the local temperature to rise, which, in turn, reduces the photoelectric conversion efficiency and stability of solar cells. Previous studies on plasmon-enhanced solar cells have rarely considered the negative effects of metal nanoparticles' ohmic losses and temperature rise on solar cell performance optimization. Therefore, it is of great interest to alleviate the ohmic loss and temperature rise that are critical for high-performance solar cells. Herein, we propose a model to comprehensively study and optimize the performance of plasmon-enhanced perovskite solar cells (PSCs) from simultaneous optical-electrical-thermal aspects. First, the optical simulation results indicated that the geometric tuning of metal nanoparticles can make full use of the plasmonic effect and significantly improve PSCs' light absorption. The analysis showed that the embedded nanoparticles with optimal geometry in PSC devices can significantly increase the optical absorption by 17% (41%) compared to non-optimal nanostructures (devices without nanoparticles). Then, we explored the influence of the temperature-dependent carrier mobility on PSC performance from the coupled electrical and thermal studies. Our results indicated that the optimization of the geometrical parameters of metal nanoparticles can minimize energy dissipation, thereby redusing the heat loss and then lowering the local cell temperature. Interestingly, PSCs' electrical properties such as carrier transportation significantly improved. Consequently, the PSC performance improved with increment in the short-circuit current by 23% and the power conversion efficiency by 38%.
与局域表面等离子体(LSP)共振相关的金属纳米颗粒,即具有高度受限的电场和大散射截面(σ),已被广泛用于增强太阳能电池的光捕获,以实现高光电性能。然而,嵌入太阳能电池中的金属纳米颗粒存在寄生欧姆损耗,这随后会导致局部温度升高,进而降低太阳能电池的光电转换效率和稳定性。先前关于等离子体增强太阳能电池的研究很少考虑金属纳米颗粒的欧姆损耗和温度升高对太阳能电池性能优化的负面影响。因此,减轻对高性能太阳能电池至关重要的欧姆损耗和温度升高具有极大的研究意义。在此,我们提出一个模型,从光电热同步的角度全面研究和优化等离子体增强钙钛矿太阳能电池(PSC)的性能。首先,光学模拟结果表明,金属纳米颗粒的几何结构调整可以充分利用等离子体效应,显著提高PSC的光吸收。分析表明,与非优化纳米结构(无纳米颗粒的器件)相比,在PSC器件中具有最佳几何结构的嵌入纳米颗粒可使光吸收显著增加17%(41%)。然后,我们从电与热的耦合研究中探索了温度依赖的载流子迁移率对PSC性能的影响。我们的结果表明,优化金属纳米颗粒的几何参数可以使能量耗散最小化,从而减少热损失,进而降低局部电池温度。有趣的是,PSC的电学性质如载流子传输得到了显著改善。因此,PSC的性能得到提升,短路电流增加了23%,功率转换效率提高了38%。