CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain.
Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Vila Universitária, 05508-000 São Paulo, São Paulo Brazil.
Biochemistry. 2021 Apr 6;60(13):991-998. doi: 10.1021/acs.biochem.0c00447. Epub 2020 Jul 14.
Regulation of enzymes is highly relevant toward orchestrating cell-free and stepwise biotransformations, thereby maximizing their overall performance. Plasmonic nanomaterials offer a great opportunity to tune the functionality of enzymes through their remarkable optical properties. Localized surface plasmon resonances (LSPR) can be used to modify chemical transformations at the nanomaterial's surface, upon light irradiation. Incident light can promote energetic processes, which may be related to an increase of local temperature (photothermal effects) but also to effects triggered by generated hotspots or hot electrons (photoelectronic effects). As a consequence, light irradiation of the protein-nanomaterial interface affects enzyme functionality. To harness these effects to finely and remotely regulate enzyme activity, the physicochemical features of the nanomaterial, properties of the incident light, and parameters governing molecular interactions must be optimized. In this Perspective, we discuss relevant examples that illustrate the use of plasmonic nanoparticles to control enzyme function through LSPR excitation. Finally, we also highlight the importance of expanding the use of plasmonic nanomaterials to the immobilization of multienzyme systems for light-driven regulation of cell-free biosynthetic pathways. Although this concept is living its infancy, we encourage the scientific community to advance in the development of novel light-controlled biocatalytic plasmonic nanoconjugates and explore their application in biosensing, applied biocatalysis, and biomedicine.
酶的调控对于协调无细胞和逐步生物转化至关重要,从而最大限度地提高它们的整体性能。等离子体纳米材料通过其显著的光学特性为调节酶的功能提供了绝佳的机会。局部表面等离子体共振(LSPR)可用于修饰纳米材料表面的化学转化,在光照射下。入射光可以促进能量过程,这可能与局部温度的升高(光热效应)有关,但也可能与产生的热点或热电子(光电效应)引发的效应有关。因此,蛋白质-纳米材料界面的光照射会影响酶的功能。为了利用这些效应来精细且远程调节酶活性,必须优化纳米材料的物理化学特性、入射光的特性以及控制分子相互作用的参数。在本观点中,我们讨论了相关的实例,这些实例说明了如何通过 LSPR 激发来控制等离子体纳米粒子的酶功能。最后,我们还强调了将等离子体纳米材料的应用扩展到多酶系统的固定化以用于无细胞生物合成途径的光驱动调控的重要性。尽管这个概念还处于起步阶段,但我们鼓励科学界在开发新型光控生物催化等离子体纳米缀合物方面取得进展,并探索它们在生物传感、应用生物催化和生物医学中的应用。