文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于等离子体纳米材料的光学生物传感平台用于病毒检测。

Plasmonic Nanomaterial-Based Optical Biosensing Platforms for Virus Detection.

机构信息

Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.

Department of Applied Biological Chemistry, College of Agriculture, Graduate School of Integrated Science & Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.

出版信息

Sensors (Basel). 2017 Oct 13;17(10):2332. doi: 10.3390/s17102332.


DOI:10.3390/s17102332
PMID:29027923
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5677418/
Abstract

Plasmonic nanomaterials (P-NM) are receiving attention due to their excellent properties, which include surface-enhanced Raman scattering (SERS), localized surface plasmon resonance (LSPR) effects, plasmonic resonance energy transfer (PRET), and magneto optical (MO) effects. To obtain such plasmonic properties, many nanomaterials have been developed, including metal nanoparticles (MNP), bimetallic nanoparticles (bMNP), MNP-decorated carbon nanotubes, (MNP-CNT), and MNP-modified graphene (MNP-GRP). These P-NMs may eventually be applied to optical biosensing systems due to their unique properties. Here, probe biomolecules, such as antibodies (Ab), probe DNA, and probe aptamers, were modified on the surface of plasmonic materials by chemical conjugation and thiol chemistry. The optical property change in the plasmonic nanomaterials was monitored based on the interaction between the probe biomolecules and target virus. After bioconjugation, several optical properties, including fluorescence, plasmonic absorbance, and diffraction angle, were changed to detect the target biomolecules. This review describes several P-NMs as potential candidates of optical sensing platforms and introduces various applications in the optical biosensing field.

摘要

等离子体纳米材料(P-NM)因其优异的性能而备受关注,这些性能包括表面增强拉曼散射(SERS)、局域表面等离子体共振(LSPR)效应、等离子体共振能量转移(PRET)和磁光(MO)效应。为了获得这些等离子体特性,已经开发了许多纳米材料,包括金属纳米粒子(MNP)、双金属纳米粒子(bMNP)、MNP 修饰的碳纳米管(MNP-CNT)和 MNP 修饰的石墨烯(MNP-GRP)。由于其独特的性能,这些 P-NM 最终可能会应用于光学生物传感系统。在这里,通过化学偶联和硫醇化学,将探针生物分子(如抗体(Ab)、探针 DNA 和探针适体)修饰在等离子体材料的表面上。基于探针生物分子与靶病毒之间的相互作用,监测等离子体纳米材料中的光学性质变化。生物共轭后,几种光学性质,包括荧光、等离子体吸收和衍射角,发生变化以检测靶生物分子。本综述介绍了几种等离子体纳米材料作为潜在的光学传感平台候选材料,并介绍了其在光学生物传感领域的各种应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d6b/5677418/7b1d93d1dfc8/sensors-17-02332-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d6b/5677418/6860c99bafa8/sensors-17-02332-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d6b/5677418/03c883aeedca/sensors-17-02332-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d6b/5677418/d8dd706a08fb/sensors-17-02332-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d6b/5677418/26ece4435b3e/sensors-17-02332-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d6b/5677418/6733fa961197/sensors-17-02332-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d6b/5677418/ea8ed65f64de/sensors-17-02332-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d6b/5677418/7b1d93d1dfc8/sensors-17-02332-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d6b/5677418/6860c99bafa8/sensors-17-02332-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d6b/5677418/03c883aeedca/sensors-17-02332-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d6b/5677418/d8dd706a08fb/sensors-17-02332-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d6b/5677418/26ece4435b3e/sensors-17-02332-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d6b/5677418/6733fa961197/sensors-17-02332-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d6b/5677418/ea8ed65f64de/sensors-17-02332-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d6b/5677418/7b1d93d1dfc8/sensors-17-02332-g007.jpg

相似文献

[1]
Plasmonic Nanomaterial-Based Optical Biosensing Platforms for Virus Detection.

Sensors (Basel). 2017-10-13

[2]
High-Performance Biosensing Systems Based on Various Nanomaterials as Signal Transducers.

Biotechnol J. 2018-8-28

[3]
A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform.

Biosens Bioelectron. 2017-11-21

[4]
Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.

Acc Chem Res. 2008-12

[5]
Binary Nanoparticle Graphene Hybrid Structure-Based Highly Sensitive Biosensing Platform for Norovirus-Like Particle Detection.

ACS Appl Mater Interfaces. 2017-8-4

[6]
Biological applications of localised surface plasmonic phenomenae.

IEE Proc Nanobiotechnol. 2005-2

[7]
Recent advancements in optical DNA biosensors: exploiting the plasmonic effects of metal nanoparticles.

Analyst. 2010-11-3

[8]
Enzyme-guided plasmonic biosensor based on dual-functional nanohybrid for sensitive detection of thrombin.

Biosens Bioelectron. 2015-3-16

[9]
Localized surface plasmon resonance-mediated fluorescence signals in plasmonic nanoparticle-quantum dot hybrids for ultrasensitive Zika virus RNA detection via hairpin hybridization assays.

Biosens Bioelectron. 2017-3-22

[10]
DNA-Functionalized Plasmonic Nanomaterials for Optical Biosensing.

Biotechnol J. 2019-9-25

引用本文的文献

[1]
Trends and Challenges of SPR Aptasensors in Viral Diagnostics: A Systematic Review and Meta-Analysis.

Biosensors (Basel). 2025-4-12

[2]
Integration of Functional Materials in Photonic and Optoelectronic Technologies for Advanced Medical Diagnostics.

Biosensors (Basel). 2025-1-10

[3]
Hierarchical Nanobiosensors at the End of the SARS-CoV-2 Pandemic.

Biosensors (Basel). 2024-2-18

[4]
Overview on the Development of Alkaline-Phosphatase-Linked Optical Immunoassays.

Molecules. 2023-9-11

[5]
Asymmetric parameter enhancement in the split-ring cavity array for virus-like particle sensing.

Biomed Opt Express. 2023-2-22

[6]
Optical Sensing of Toxic Cyanide Anions Using Noble Metal Nanomaterials.

Nanomaterials (Basel). 2023-1-10

[7]
Carbon Nanotube and Its Derived Nanomaterials Based High Performance Biosensing Platform.

Biosensors (Basel). 2022-9-6

[8]
Detection of SARS-CoV-2 and its S and N proteins using surface enhanced Raman spectroscopy.

RSC Adv. 2021-7-26

[9]
Biosensors for the Determination of SARS-CoV-2 Virus and Diagnosis of COVID-19 Infection.

Int J Mol Sci. 2022-1-8

[10]
Electronic and electrochemical viral detection for point-of-care use: A systematic review.

PLoS One. 2021

本文引用的文献

[1]
Ultrasensitive Terahertz Biosensors Based on Fano Resonance of a Graphene/Waveguide Hybrid Structure.

Sensors (Basel). 2017-8-21

[2]
Binary Nanoparticle Graphene Hybrid Structure-Based Highly Sensitive Biosensing Platform for Norovirus-Like Particle Detection.

ACS Appl Mater Interfaces. 2017-8-4

[3]
Magneto-optically active magnetoplasmonic graphene.

Chem Commun (Camb). 2017-5-30

[4]
Localized surface plasmon resonance-mediated fluorescence signals in plasmonic nanoparticle-quantum dot hybrids for ultrasensitive Zika virus RNA detection via hairpin hybridization assays.

Biosens Bioelectron. 2017-3-22

[5]
In situ self-assembly of gold nanoparticles on hydrophilic and hydrophobic substrates for influenza virus-sensing platform.

Sci Rep. 2017-3-14

[6]
Strong Magneto-Optical Response of Nonmagnetic Organic Materials Coupled to Plasmonic Nanostructures.

Nano Lett. 2017-2-8

[7]
Gold Nanoparticle-Quantum Dot Fluorescent Nanohybrid: Application for Localized Surface Plasmon Resonance-induced Molecular Beacon Ultrasensitive DNA Detection.

Nanoscale Res Lett. 2016-12

[8]
A reusable laser wrapped graphene-Ag array based SERS sensor for trace detection of genomic DNA methylation.

Biosens Bioelectron. 2016-9-22

[9]
Versatility of a localized surface plasmon resonance-based gold nanoparticle-alloyed quantum dot nanobiosensor for immunofluorescence detection of viruses.

Biosens Bioelectron. 2016-10-20

[10]
Size-controlled preparation of peroxidase-like graphene-gold nanoparticle hybrids for the visible detection of norovirus-like particles.

Biosens Bioelectron. 2016-8-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索