Kim Young-Hoon, Zhai Yaxin, Gaulding E Ashley, Habisreutinger Severin N, Moot Taylor, Rosales Bryan A, Lu Haipeng, Hazarika Abhijit, Brunecky Roman, Wheeler Lance M, Berry Joseph J, Beard Matthew C, Luther Joseph M
National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
ACS Nano. 2020 Jul 28;14(7):8816-8825. doi: 10.1021/acsnano.0c03418. Epub 2020 Jul 15.
Colloidal metal halide perovskite nanocrystals (NCs) with chiral ligands are outstanding candidates as a circularly polarized luminescence (CPL) light source due to many advantages such as high photoluminescence quantum efficiency, large spin-orbit coupling, and extensive tunability composition and choice of organic ligands. However, achieving pronounced and controllable polarized light emission remains challenging. Here, we develop strategies to achieve high CPL responses from colloidal formamidinium lead bromide (FAPbBr) NCs at room temperature using chiral surface ligands. First, we show that replacing a portion of typical ligands (oleylamine) with short chiral ligands (()-2-octylamine) during FAPbBr NC synthesis results in small and monodisperse NCs that yield high CPL with average luminescence dissymmetry -factor, = 6.8 × 10. To the best of our knowledge, this is the highest among reported perovskite materials at room temperature to date and represents around 10-fold improvement over the previously reported colloidal CsPbClBrI NCs. In order to incorporate NCs into any optoelectronic or spintronic application, the NCs necessitate purification, which removes a substantial amount of the chiral ligands and extinguishes the CPL signals. To circumvent this issue, we also developed a postsynthetic ligand treatment using a different chiral ligand, (/-)methylbenzylammonium bromide, which also induces a CPL with an average = ±1.18 × 10. This postsynthetic method is also amenable for long-range charge transport since methylbenzylammonium is quite compact in relation to other surface ligands. Our demonstrations of high CPL and from both as-synthesized and purified perovskite NCs at room temperature suggest a route to demonstrate colloidal NC-based spintronics.
具有手性配体的胶体金属卤化物钙钛矿纳米晶体(NCs)是作为圆偏振发光(CPL)光源的杰出候选材料,因为它们具有许多优点,如高光致发光量子效率、大自旋 - 轨道耦合以及组成和有机配体选择的广泛可调性。然而,实现显著且可控的偏振光发射仍然具有挑战性。在此,我们开发了一些策略,使用手性表面配体在室温下从胶体甲脒铅溴(FAPbBr)纳米晶体中实现高CPL响应。首先,我们表明在FAPbBr纳米晶体合成过程中,用短手性配体(( - ) - 2 - 辛胺)取代一部分典型配体(油胺)会产生小且单分散的纳米晶体,其产生具有平均发光不对称因子g = 6.8×10⁻³的高CPL。据我们所知,这是迄今为止报道的室温下钙钛矿材料中最高的,比之前报道的胶体CsPbClBrI纳米晶体提高了约10倍。为了将纳米晶体纳入任何光电子或自旋电子应用中,纳米晶体需要纯化,这会去除大量的手性配体并消除CPL信号。为了解决这个问题,我们还开发了一种使用不同手性配体((±) - 甲基苄基溴化铵)的合成后配体处理方法,该方法也能诱导出平均g = ±1.18×10⁻³的CPL。这种合成后方法也适用于长程电荷传输,因为甲基苄基铵相对于其他表面配体相当紧凑。我们在室温下对合成态和纯化后的钙钛矿纳米晶体的高CPL和g的证明为展示基于胶体纳米晶体的自旋电子学提供了一条途径。