Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain.
Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
J Chem Inf Model. 2020 Nov 23;60(11):5529-5539. doi: 10.1021/acs.jcim.0c00406. Epub 2020 Jul 22.
We present a multistep protocol, combining Monte Carlo and molecular dynamics simulations, for the estimation of absolute binding free energies, one of the most significant challenges in computer-aided drug design. The protocol is based on an initial short enhanced Monte Carlo simulation, followed by clustering of the ligand positions, which serve to identify the most relevant states of the unbinding process. From these states, extensive molecular dynamics simulations are run to estimate an equilibrium probability distribution obtained with Markov State Models, which is subsequently used to estimate the binding free energy. We tested the procedure on two different protein systems, the Plasminogen kringle domain 1 and Urokinase, each with multiple ligands, for an aggregated molecular dynamics length of 760 μs. Our results indicate that the initial sampling of the unbinding events largely facilitates the convergence of the subsequent molecular dynamics exploration. Moreover, the protocol is capable to properly rank the set of ligands examined, albeit with a significant computational cost for the, more realistic, Urokinase complexes. Overall, this work demonstrates the usefulness of combining enhanced sampling methods with regular simulation techniques as a way to obtain more reliable binding affinity estimates.
我们提出了一个多步骤的协议,结合了蒙特卡罗和分子动力学模拟,用于估计绝对结合自由能,这是计算机辅助药物设计中最具挑战性的问题之一。该协议基于初始的短增强蒙特卡罗模拟,随后对配体位置进行聚类,以确定解吸过程中最相关的状态。从这些状态出发,进行广泛的分子动力学模拟,以估计用马尔可夫状态模型获得的平衡概率分布,随后用于估计结合自由能。我们在两个不同的蛋白质系统(纤溶酶原kringle 结构域 1 和尿激酶)上测试了该程序,每个系统都有多个配体,总分子动力学长度为 760 μs。我们的结果表明,解吸事件的初始采样极大地促进了后续分子动力学探索的收敛。此外,该协议能够正确地对所研究的配体进行排序,尽管对于更现实的尿激酶复合物来说,计算成本很高。总的来说,这项工作证明了结合增强采样方法和常规模拟技术以获得更可靠的结合亲和力估计的有效性。