Suppr超能文献

神经进化方法研究奇异常微分方程。

Investigation of singular ordinary differential equations by a neuroevolutionary approach.

机构信息

Department of Mathematics, Abdul Wali Khan University Mardan, KP, Pakistan.

KMUTTFixed Point Research Laboratory, Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand.

出版信息

PLoS One. 2020 Jul 9;15(7):e0235829. doi: 10.1371/journal.pone.0235829. eCollection 2020.

Abstract

In this research, we have investigated doubly singular ordinary differential equations and a real application problem of studying the temperature profile in a porous fin model. We have suggested a novel soft computing strategy for the training of unknown weights involved in the feed-forward artificial neural networks (ANNs). Our neuroevolutionary approach is used to suggest approximate solutions to a highly nonlinear doubly singular type of differential equations. We have considered a real application from thermodynamics, which analyses the temperature profile in porous fins. For this purpose, we have used the optimizer, namely, the fractional-order particle swarm optimization technique (FO-DPSO), to minimize errors in solutions through fitness functions. ANNs are used to design the approximate series of solutions to problems considered in this paper. We find the values of unknown weights such that the approximate solutions to these problems have a minimum residual error. For global search in the domain, we have initialized FO-DPSO with random solutions, and it collects best so far solutions in each generation/ iteration. In the second phase, we have fine-tuned our algorithm by initializing FO-DPSO with the collection of best so far solutions. It is graphically illustrated that this strategy is very efficient in terms of convergence and minimum mean squared error in its best solutions. We can use this strategy for the higher-order system of differential equations modeling different important real applications.

摘要

在这项研究中,我们研究了双重奇异常微分方程和多孔翅片模型中温度分布的实际应用问题。我们提出了一种新的软计算策略,用于训练前馈人工神经网络(ANNs)中涉及的未知权重。我们的神经进化方法用于提出高度非线性双重奇异型微分方程的近似解。我们考虑了一个来自热力学的实际应用,分析了多孔翅片中的温度分布。为此,我们使用了优化器,即分数阶粒子群优化技术(FO-DPSO),通过适应度函数最小化解中的误差。ANN 用于设计本文所考虑问题的近似解系列。我们找到未知权重的值,使得这些问题的近似解具有最小的残差。为了在域中进行全局搜索,我们使用随机解初始化 FO-DPSO,并在每一代/迭代中收集迄今为止最好的解。在第二阶段,我们通过用迄今为止最好的解集合初始化 FO-DPSO 来微调我们的算法。从收敛性和最佳解的均方误差的角度来看,该策略非常有效。我们可以将这种策略用于建模不同重要实际应用的高阶微分方程系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验