Suppr超能文献

Lu-DOTATATE 治疗中肿瘤灌注和受体密度对肿瘤控制概率的影响:标准和优化治疗的计算机模拟分析。

Effect of Tumor Perfusion and Receptor Density on Tumor Control Probability in Lu-DOTATATE Therapy: An In Silico Analysis for Standard and Optimized Treatment.

机构信息

ABX-CRO Advanced Pharmaceutical Services Forschungsgesellschaft mbH, Dresden, Germany.

Department of Nuclear Medicine, Ulm University, Ulm, Germany.

出版信息

J Nucl Med. 2021 Jan;62(1):92-98. doi: 10.2967/jnumed.120.245068. Epub 2020 Jul 9.

Abstract

The aim of this work was to determine a minimal tumor perfusion and receptor density for Lu-DOTATATE therapy using physiologically based pharmacokinetic (PBPK) modeling considering, first, a desired tumor control probability (TCP) of 99% and, second, a maximal tolerated biologically effective dose (BED) for organs at risk (OARs) in the treatment of neuroendocrine tumors and meningioma. A recently developed PBPK model was used. Nine virtual patients (i.e., individualized PBPK models) were used to perform simulations of pharmacokinetics for different combinations of perfusion (0.001-0.1 mL/g/min) and receptor density (1-100 nmol/L). The TCP for each combination was determined for 3 different treatment strategies: a standard treatment (4 cycles of 7.4 GBq and 105 nmol), a treatment maximizing the number of cycles based on BED for red marrow and kidneys, and a treatment having 4 cycles with optimized ligand amount and activity. The red marrow and the kidneys (BED of 2 Gy and 40 Gy, respectively) were assumed to be OARs. Additionally, the influence of varying glomerular filtration rates, kidney somatostatin receptor densities, tumor volumes, and release rates was investigated. To achieve a TCP of at least 99% in the standard treatment, a minimal tumor perfusion of 0.036 ± 0.023 mL/g/min and receptor density of 34 ± 20 nmol/L were determined for the 9 virtual patients. With optimization of the number of cycles, the minimum values for perfusion and receptor density were considerably lower, at 0.022 ± 0.012 mL/g/min and 21 ± 11 nmol/L, respectively. However, even better results (perfusion, 0.018 ± 0.009 mL/g/min; receptor density, 18 ± 10 nmol/L) were obtained for strategy 3. The release rate of Lu (or labeled metabolites) from tumor cells had the strongest effect on the minimal perfusion and receptor density for standard and optimized treatments. PBPK modeling and simulations represent an elegant approach to individually determine the minimal tumor perfusion and minimal receptor density required to achieve an adequate TCP. This computational method can be used in the radiopharmaceutical development process for ligand and target selection for specific types of tumors. In addition, this method could be used to optimize clinical trials.

摘要

这项工作的目的是使用基于生理的药代动力学(PBPK)模型来确定 Lu-DOTATATE 治疗的最小肿瘤灌注和受体密度,首先考虑到 99%的理想肿瘤控制概率(TCP),其次是考虑神经内分泌肿瘤和脑膜瘤治疗中风险器官(OARs)的最大耐受生物学有效剂量(BED)。使用了最近开发的 PBPK 模型。使用九个虚拟患者(即个体化 PBPK 模型)来模拟不同灌注(0.001-0.1 mL/g/min)和受体密度(1-100 nmol/L)组合的药代动力学。对于 3 种不同的治疗策略,确定了每个组合的 TCP:标准治疗(4 个周期,7.4GBq 和 105 nmol)、基于骨髓和肾脏 BED 的最大循环次数治疗、以及具有 4 个周期的最佳配体量和活性治疗。骨髓和肾脏(BED 分别为 2 Gy 和 40 Gy)被认为是 OARs。此外,还研究了肾小球滤过率、肾脏生长抑素受体密度、肿瘤体积和释放率变化的影响。在标准治疗中,为了达到至少 99%的 TCP,在 9 个虚拟患者中,确定了最小的肿瘤灌注为 0.036 ± 0.023 mL/g/min,受体密度为 34 ± 20 nmol/L。通过优化周期数,灌注和受体密度的最小值要低得多,分别为 0.022 ± 0.012 mL/g/min 和 21 ± 11 nmol/L。然而,对于策略 3,甚至可以获得更好的结果(灌注,0.018 ± 0.009 mL/g/min;受体密度,18 ± 10 nmol/L)。肿瘤细胞中 Lu(或标记代谢物)的释放率对标准和优化治疗的最小灌注和受体密度有最强的影响。PBPK 建模和模拟是一种确定实现适当 TCP 所需的最小肿瘤灌注和最小受体密度的优雅方法。该计算方法可用于放射性药物开发过程中,用于选择特定类型肿瘤的配体和靶标。此外,该方法可用于优化临床试验。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验