Department of Histology and Embryology, Istanbul Medipol University International School of Medicine, Istanbul, Turkey; Regenerative and Restorative Medicine Research Center, Institute of Health Science, Department of Neuroscience, Istanbul Medipol University, Istanbul, Turkey; Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA.
Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA; Vifor Pharma, Villars-sur-Glâne, Switzerland.
J Biol Chem. 2020 Aug 21;295(34):12233-12246. doi: 10.1074/jbc.RA120.014329. Epub 2020 Jul 9.
Disorders that disrupt myelin formation during development or in adulthood, such as multiple sclerosis and peripheral neuropathies, lead to severe pathologies, illustrating myelin's crucial role in normal neural functioning. However, although our understanding of glial biology is increasing, the signals that emanate from axons and regulate myelination remain largely unknown. To identify the core components of the myelination process, here we adopted a microarray analysis approach combined with laser-capture microdissection of spinal motoneurons during the myelinogenic phase of development. We identified neuronal genes whose expression was enriched during myelination and further investigated hepatoma-derived growth factor-related protein 3 (HRP3 or HDGFRP3). HRP3 was strongly expressed in the white matter fiber tracts of the peripheral (PNS) and central (CNS) nervous systems during myelination and remyelination in a cuprizone-induced demyelination model. The dynamic localization of HPR3 between axons and nuclei during myelination was consistent with its axonal localization during neuritogenesis. To study this phenomenon, we identified two splice variants encoded by the gene: the canonical isoform HRP3-I and a newly recognized isoform, HRP3-II. HRP3-I remained solely in the nucleus, whereas HRP3-II displayed distinct axonal localization both before and during myelination. Interestingly, HRP3-II remained in the nuclei of unmyelinated neurons and glial cells, suggesting the existence of a molecular machinery that transfers it to and retains it in the axons of neurons fated for myelination. Overexpression of HRP3-II, but not of HRP3-I, increased Schwann cell numbers and myelination in PNS neuron-glia co-cultures. However, HRP3-II overexpression in CNS co-cultures did not alter myelination.
在发育过程或成年期干扰髓鞘形成的疾病,如多发性硬化症和周围神经病变,会导致严重的病理,说明髓鞘在正常神经功能中的关键作用。然而,尽管我们对神经胶质生物学的理解在增加,但轴突发出并调节髓鞘形成的信号仍然很大程度上未知。为了确定髓鞘形成过程的核心组成部分,我们在这里采用了微阵列分析方法,并结合激光捕获微解剖技术,对发育过程中的脊髓运动神经元进行了髓鞘形成期的分析。我们确定了在髓鞘形成过程中表达丰富的神经元基因,并进一步研究了肝癌衍生生长因子相关蛋白 3(HRP3 或 HDGFRP3)。HRP3 在髓鞘形成和环丝氨酸诱导的脱髓鞘模型中的再髓鞘化过程中,在外周(PNS)和中枢(CNS)神经系统的白质纤维束中强烈表达。在髓鞘形成过程中,HPR3 在轴突和核之间的动态定位与神经突发生过程中的轴突定位一致。为了研究这种现象,我们确定了由 基因编码的两种剪接变体:经典同工型 HRP3-I 和新识别的同工型 HRP3-II。HRP3-I 仅留在核内,而 HRP3-II 在髓鞘形成前后均显示出明显的轴突定位。有趣的是,HRP3-II 留在未髓鞘化神经元和神经胶质细胞的核内,表明存在一种分子机制,将其转移并保留在注定要髓鞘化的神经元轴突中。HRP3-II 的过表达,而不是 HRP3-I 的过表达,增加了 PNS 神经元-神经胶质细胞共培养物中的施万细胞数量和髓鞘形成。然而,HRP3-II 在 CNS 共培养物中的过表达并没有改变髓鞘形成。