Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia.
Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia.
J Biol Chem. 2020 Aug 21;295(34):12143-12152. doi: 10.1074/jbc.RA120.014168. Epub 2020 Jul 9.
Rapid clearance by renal filtration is a major impediment to the translation of small bioactive biologics into drugs. To extend serum , a commonly used approach is to attach drug leads to the G-related albumin-binding domain (ABD) to bind albumin and evade clearance. Despite the success of this approach in extending half-lives of a wide range of biologics, it is unclear whether the existing constructs are optimized for binding and size; any improvements along these lines could lead to improved drugs. Characterization of the biophysics of binding of an ABD to albumin in solution could shed light on this question. Here, we examine the binding of an ABD to human serum albumin using isothermal titration calorimetry and assess the structural integrity of the ABD using CD, NMR, and molecular dynamics. A structure-activity analysis of truncations of the ABD suggests that downsized variants could replace the full-length domain. Reducing size could have the benefit of reducing potential immunogenicity problems. We further showed that one of these variants could be used to design a bifunctional molecule with affinity for albumin and a serum protein involved in cholesterol metabolism, PCSK9, demonstrating the potential utility of these fragments in the design of cholesterol-lowering drugs. Future work could extend these binding studies to other ABD variants to develop therapeutics. Our study presents new understanding of the solution structural and binding properties of ABDs, which has implications for the design of next-generation long-lasting therapeutics.
肾脏过滤的快速清除是将小生物活性生物制剂转化为药物的主要障碍。为了延长血清半衰期,一种常用的方法是将药物先导物连接到 G 相关白蛋白结合域(ABD)上,以结合白蛋白并逃避清除。尽管这种方法在延长多种生物制剂的半衰期方面取得了成功,但尚不清楚现有的构建体是否针对结合和大小进行了优化;沿着这些路线的任何改进都可能导致更好的药物。在溶液中 ABD 与白蛋白结合的生物物理学特性的表征可以为这个问题提供一些线索。在这里,我们使用等温滴定量热法研究 ABD 与人血清白蛋白的结合,并使用 CD、NMR 和分子动力学评估 ABD 的结构完整性。ABD 截断体的结构活性分析表明,小型化变体可以替代全长结构域。减小尺寸可能有助于减少潜在的免疫原性问题。我们还进一步表明,这些变体之一可用于设计具有白蛋白亲和力和参与胆固醇代谢的血清蛋白 PCSK9 亲和力的双功能分子,证明了这些片段在设计降胆固醇药物方面的潜在应用。未来的工作可以将这些结合研究扩展到其他 ABD 变体,以开发治疗方法。我们的研究提供了对 ABD 的溶液结构和结合特性的新认识,这对下一代长效治疗药物的设计具有重要意义。