Guan Zeyi, Linsley Chase S, Hwang Injoo, Yao Gongcheng, Wu Benjamin M, Li Xiaochun
Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA.
Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA.
Mater Lett. 2020 Mar 15;263. doi: 10.1016/j.matlet.2019.127282. Epub 2019 Dec 28.
There is a lack of bioabsorbable materials with adequate mechanical strength suitable for implant applications that provide temporary support while tissue integrity is restored, especially for pediatric applications. Bioabsorbable metals have emerged as an attractive choice due to their combination of strength, ductility, and biocompatibility Zinc has shown great promise as a bioabsorbable metal, but the weak mechanical properties of pure zinc limit its application as an implant material. This study investigates zinc-tungsten carbide (Zn-WC) nanocomposite as a novel material for bioabsorbable metallic implants. Ultrasound-assisted powder compaction was used to fabricate Zn-WC nanocomposites. This study includes the material characterization of microstructure, microhardness, and degradability. Results showed that tungsten carbide nanoparticles enhanced the mechanical properties of Zn, and maintained the favorable corrosion rate of pure Zn. These results encourage further investigation of Zn-WC nanocomposites for biomedical applications with the ultimate goal of creating safe and efficacious bioabsorbable metallic implants for many clinical applications.
缺乏具有足够机械强度的生物可吸收材料,这些材料适合用于植入应用,在恢复组织完整性时提供临时支撑,特别是在儿科应用中。生物可吸收金属因其强度、延展性和生物相容性的结合而成为有吸引力的选择。锌作为一种生物可吸收金属已显示出巨大潜力,但纯锌的机械性能较弱限制了其作为植入材料的应用。本研究调查了碳化钨锌(Zn-WC)纳米复合材料作为生物可吸收金属植入物的新型材料。采用超声辅助粉末压实法制备Zn-WC纳米复合材料。本研究包括微观结构、显微硬度和降解性的材料表征。结果表明,碳化钨纳米颗粒增强了锌的机械性能,并保持了纯锌良好的腐蚀速率。这些结果鼓励进一步研究Zn-WC纳米复合材料在生物医学应用中的应用,最终目标是为许多临床应用创造安全有效的生物可吸收金属植入物。