Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China.
Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada.
Integr Zool. 2021 Jan;16(1):33-52. doi: 10.1111/1749-4877.12460. Epub 2020 Aug 17.
The analysis of molecular variance (AMOVA) is a widely used statistical method in population genetics and molecular ecology. The classic framework of AMOVA only supports haploid and diploid data, in which the number of hierarchies ranges from two to four. In practice, natural populations can be classified into more hierarchies, and polyploidy is frequently observed in extant species. The ploidy level may even vary within the same species, and/or within the same individual. We generalized the framework of AMOVA such that it can be used for any number of hierarchies and any level of ploidy. Based on this framework, we present four methods to account for data that are multilocus genotypic and allelic phenotypic (with unknown allele dosage). We use simulated datasets and an empirical dataset to evaluate the performance of our framework. We make freely available our methods in a new software package, polygene, which is freely available at https://github.com/huangkang1987/polygene.
AMOVA 分析是群体遗传学和分子生态学中广泛使用的统计方法。AMOVA 的经典框架仅支持单倍体和二倍体数据,其中层次的数量范围从两个到四个。在实践中,自然种群可以分为更多的层次,并且多倍体在现存物种中经常观察到。倍性水平甚至可能在同一物种内,以及/或同一个体内发生变化。我们推广了 AMOVA 的框架,以便它可以用于任意数量的层次和任意倍性水平。基于这个框架,我们提出了四种方法来处理多基因座基因型和等位基因表型数据(具有未知等位基因剂量)。我们使用模拟数据集和一个实证数据集来评估我们框架的性能。我们在一个名为 polygene 的新软件包中免费提供我们的方法,该软件包可在 https://github.com/huangkang1987/polygene 上免费获取。