Suppr超能文献

基于 AMOVA 的群体遗传数据分析聚类。

AMOVA-based clustering of population genetic data.

机构信息

Department of Ecology and Evolution, Biophore University of Lausanne, Switzerland.

出版信息

J Hered. 2012 Sep-Oct;103(5):744-50. doi: 10.1093/jhered/ess047. Epub 2012 Aug 15.

Abstract

Determining the genetic structure of populations is becoming an increasingly important aspect of genetic studies. One of the most frequently used methods is the calculation of F-statistics using an Analysis of Molecular Variance (AMOVA). However, this has the drawback that the population hierarchy has to be known a priori. Therefore, the population structure is often based on the results of a clustering analysis. Here I show how these two steps, clustering and calculation of F-statistics, can be combined in a single analysis. I do this by showing how the AMOVA framework is theoretically related to the widely used method of K-means clustering and can be used for the clustering of populations into groups. Simulations were used to show that the method performed very well both under random mating and under nonrandom mating. However, when the migration rates were high, the results were better under random mating than under predominant selfing or clonal reproduction. Two summary statistics were tested for estimating the number of clusters. Overall, pseudo-F showed the better performance, but BIC is better for detecting whether any significant structure is present. The results show that the AMOVA-based K-means clustering is useful for clustering population genetic data. Programs to perform the clustering can be downloaded from www.patrickmeirmans.com/software.

摘要

确定群体的遗传结构正成为遗传研究中越来越重要的一个方面。最常用的方法之一是使用基于分子方差分析(AMOVA)的 F 统计量计算。然而,这种方法的缺点是必须事先知道种群层次结构。因此,种群结构通常基于聚类分析的结果。在这里,我展示了如何将聚类和 F 统计量计算这两个步骤结合在一个单一的分析中。我通过展示 AMOVA 框架与广泛使用的 K-均值聚类方法在理论上的关系,并展示如何将种群聚类为群体,来实现这一点。模拟表明,该方法在随机交配和非随机交配下都表现得非常好。然而,当迁移率较高时,随机交配下的结果优于主要自交或克隆繁殖下的结果。测试了两种汇总统计量来估计聚类的数量。总体而言,伪 F 表现出更好的性能,但 BIC 更适合检测是否存在任何显著的结构。结果表明,基于 AMOVA 的 K-均值聚类对于聚类群体遗传数据非常有用。执行聚类的程序可以从 www.patrickmeirmans.com/software 下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验