Suppr超能文献

使用深度神经网络的快速几何失真校正:1特斯拉MRI直线加速器系统的实现

Fast geometric distortion correction using a deep neural network: Implementation for the 1 Tesla MRI-Linac system.

作者信息

Li Mao, Shan Shanshan, Chandra Shekhar S, Liu Feng, Crozier Stuart

机构信息

School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, 4067, Australia.

出版信息

Med Phys. 2020 Sep;47(9):4303-4315. doi: 10.1002/mp.14382. Epub 2020 Aug 2.

Abstract

PURPOSE

Combining high-resolution magnetic resonance imaging (MRI) with a linear accelerator (Linac) as a single MRI-Linac system provides the capability to monitor intra-fractional motion and anatomical changes during radiotherapy, which facilitates more accurate delivery of radiation dose to the tumor and less exposure to healthy tissue. The gradient nonlinearity (GNL)-induced distortions in MRI, however, hinder the implementation of MRI-Linac system in image-guided radiotherapy where highly accurate geometry and anatomy of the target tumor is indispensable.

METHODS

To correct the geometric distortions in MR images, in particular, for the 1 Tesla (T) MRI-Linac system, a deep fully connected neural network was proposed to automatically learn the intricate relationship between the undistorted (theoretical) and distorted (real) space. A dataset, consisting of spatial samples acquired by phantom measurement that covers both inside and outside the working diameter of spherical volume (DSV), was utilized for training the neural network, which offers the ability to describe subtle deviations of the GNL field within the entire region of interest (ROI).

RESULTS

The performance of the proposed method was evaluated on MR images of a three-dimensional (3D) phantom and the pelvic region of an adult volunteer scanned in the 1T MRI-Linac system. The experimental results showed that the severe geometric distortions within the entire ROI had been successfully corrected with an error less than the pixel size. Also, the presented network is highly efficient, which achieved significant improvement in terms of computational efficiency compared to existing methods.

CONCLUSIONS

The feasibility of the presented deep neural network for characterizing the GNL field deviations in the 1T MRI-Linac system was demonstrated in this study, which shows promise in facilitating the MRI-Linac system to be routinely implemented in real-time MRI-guided radiotherapy.

摘要

目的

将高分辨率磁共振成像(MRI)与直线加速器(Linac)结合为单一的MRI-Linac系统,能够在放射治疗期间监测分次内运动和解剖结构变化,这有助于更准确地将辐射剂量传递到肿瘤,同时减少对健康组织的照射。然而,MRI中由梯度非线性(GNL)引起的畸变阻碍了MRI-Linac系统在图像引导放射治疗中的应用,在该治疗中,目标肿瘤的高精度几何形状和解剖结构是必不可少的。

方法

为了校正MR图像中的几何畸变,特别是针对1特斯拉(T)的MRI-Linac系统,提出了一种深度全连接神经网络,以自动学习未畸变(理论)空间和畸变(实际)空间之间的复杂关系。一个由通过体模测量获取的空间样本组成的数据集被用于训练神经网络,该数据集覆盖了球形体积(DSV)工作直径内外的区域,从而能够描述整个感兴趣区域(ROI)内GNL场的细微偏差。

结果

在1T MRI-Linac系统中扫描的三维(3D)体模和成年志愿者盆腔区域的MR图像上评估了所提出方法的性能。实验结果表明,整个ROI内的严重几何畸变已成功校正,误差小于像素大小。此外,所提出的网络效率很高,与现有方法相比,在计算效率方面有显著提高。

结论

本研究证明了所提出的深度神经网络用于表征1T MRI-Linac系统中GNL场偏差的可行性,这表明该网络有望促进MRI-Linac系统在实时MRI引导放射治疗中的常规应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验