Department of Genetics, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA.
Institute for Stem Cell Biology and Regenerative Medicine, 265 Campus Dr., Stanford University, Stanford, CA 94305, USA.
Gigascience. 2020 Jul 1;9(7). doi: 10.1093/gigascience/giaa069.
Macaque species share >93% genome homology with humans and develop many disease phenotypes similar to those of humans, making them valuable animal models for the study of human diseases (e.g., HIV and neurodegenerative diseases). However, the quality of genome assembly and annotation for several macaque species lags behind the human genome effort.
To close this gap and enhance functional genomics approaches, we used a combination of de novo linked-read assembly and scaffolding using proximity ligation assay (HiC) to assemble the pig-tailed macaque (Macaca nemestrina) genome. This combinatorial method yielded large scaffolds at chromosome level with a scaffold N50 of 127.5 Mb; the 23 largest scaffolds covered 90% of the entire genome. This assembly revealed large-scale rearrangements between pig-tailed macaque chromosomes 7, 12, and 13 and human chromosomes 2, 14, and 15. We subsequently annotated the genome using transcriptome and proteomics data from personalized induced pluripotent stem cells derived from the same animal. Reconstruction of the evolutionary tree using whole-genome annotation and orthologous comparisons among 3 macaque species, human, and mouse genomes revealed extensive homology between human and pig-tailed macaques with regards to both pluripotent stem cell genes and innate immune gene pathways. Our results confirm that rhesus and cynomolgus macaques exhibit a closer evolutionary distance to each other than either species exhibits to humans or pig-tailed macaques.
These findings demonstrate that pig-tailed macaques can serve as an excellent animal model for the study of many human diseases particularly with regards to pluripotency and innate immune pathways.
猕猴属与人类的基因组同源性超过 93%,并表现出许多与人类相似的疾病表型,使其成为研究人类疾病(例如 HIV 和神经退行性疾病)的有价值的动物模型。然而,几种猕猴物种的基因组组装和注释质量落后于人类基因组计划。
为了缩小这一差距并增强功能基因组学方法,我们使用了从头组装的结合物和使用邻近连接测定(HiC)的支架来组装长尾猕猴(Macaca nemestrina)基因组。这种组合方法在染色体水平上产生了大的支架,支架 N50 为 127.5Mb;23 个最大的支架覆盖了整个基因组的 90%。该组装揭示了长尾猕猴染色体 7、12 和 13 与人类染色体 2、14 和 15 之间的大规模重排。随后,我们使用来自同一动物的个性化诱导多能干细胞的转录组和蛋白质组数据对基因组进行注释。使用 3 种猕猴、人类和小鼠基因组的全基因组注释和直系同源比较重建进化树表明,人类和长尾猕猴在多能干细胞基因和固有免疫基因途径方面具有广泛的同源性。我们的研究结果证实,恒河猴和食蟹猴彼此之间的进化距离比任何物种与人类或长尾猕猴之间的进化距离都更近。
这些发现表明,长尾猕猴可以作为研究许多人类疾病的优秀动物模型,特别是在多能性和固有免疫途径方面。