Suppr超能文献

利用光激发的核壳量子点使附加的自由基量子比特产生自旋极化

Using Photoexcited Core/Shell Quantum Dots To Spin Polarize Appended Radical Qubits.

作者信息

Olshansky Jacob H, Harvey Samantha M, Pennel Makenna L, Krzyaniak Matthew D, Schaller Richard D, Wasielewski Michael R

机构信息

Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States.

Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.

出版信息

J Am Chem Soc. 2020 Aug 5;142(31):13590-13597. doi: 10.1021/jacs.0c06073. Epub 2020 Jul 23.

Abstract

The synthetic tunability, flexibility, and rich spin physics of semiconductor quantum dots (QDs) make them promising candidates for quantum information science applications. However, the rapid spin relaxation observed in colloidal quantum dots limits their functionality. In the current work, we demonstrate a method to harness photoexcited spin states in QDs to produce long-lived spin polarization on an appended organic ligand molecule. We present a system composed of CdSe/CdS core/shell QDs, covalently linked to naphthalenediimide (NDI) electron-accepting molecules. The electron transfer dynamics from photoexcited QDs to the appended NDI ligands is explored as a function of both shell thickness and number of NDIs per QD. Transient EPR spectroscopy shows that the photoexcited QDs strongly spin polarize the NDI radical anion, which is interpreted in the context of both the radical pair and the triplet mechanisms of spin polarization. This work serves as an initial step toward using photoexcited QDs to strongly spin polarize organic radicals having long spin relaxation times to serve as spin qubits in quantum information science applications.

摘要

半导体量子点(QDs)的合成可调性、灵活性和丰富的自旋物理特性使其成为量子信息科学应用的有前途的候选者。然而,在胶体量子点中观察到的快速自旋弛豫限制了它们的功能。在当前工作中,我们展示了一种利用量子点中的光激发自旋态在附加的有机配体分子上产生长寿命自旋极化的方法。我们提出了一个由CdSe/CdS核壳量子点组成的系统,该量子点与萘二亚胺(NDI)电子接受分子共价连接。研究了从光激发量子点到附加的NDI配体的电子转移动力学,它是壳层厚度和每个量子点上NDI数量的函数。瞬态电子顺磁共振光谱表明,光激发量子点强烈地使NDI自由基阴离子自旋极化,这在自旋极化的自由基对和三重态机制的背景下得到了解释。这项工作是朝着利用光激发量子点使具有长自旋弛豫时间的有机自由基强烈自旋极化以在量子信息科学应用中用作自旋量子比特迈出的第一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验