Privitera Alberto, Macaluso Emilio, Chiesa Alessandro, Gabbani Alessio, Faccio Davide, Giuri Demetra, Briganti Matteo, Giaconi Niccolò, Santanni Fabio, Jarmouni Nabila, Poggini Lorenzo, Mannini Matteo, Chiesa Mario, Tomasini Claudia, Pineider Francesco, Salvadori Enrico, Carretta Stefano, Sessoli Roberta
Department of Chemistry and NIS Centre, University of Torino Via Giuria 7 Torino I-10125 Italy
Department of Chemistry "U. Schiff" (DICUS), University of Florence & UdR INSTM Firenze Via della Lastruccia 3-13 Sesto Fiorentino I-50019 Italy
Chem Sci. 2022 Oct 4;13(41):12208-12218. doi: 10.1039/d2sc03712b. eCollection 2022 Oct 26.
It is well assessed that the charge transport through a chiral potential barrier can result in spin-polarized charges. The possibility of driving this process through visible photons holds tremendous potential for several aspects of quantum information science, , the optical control and readout of qubits. In this context, the direct observation of this phenomenon spin-sensitive spectroscopies is of utmost importance to establish future guidelines to control photo-driven spin selectivity in chiral structures. Here, we provide direct proof that time-resolved electron paramagnetic resonance (EPR) can be used to detect long-lived spin polarization generated by photoinduced charge transfer through a chiral bridge. We propose a system comprising CdSe quantum dots (QDs), as a donor, and C, as an acceptor, covalently linked through a saturated oligopeptide helical bridge (χ) with a rigid structure of ∼10 Å. Time-resolved EPR spectroscopy shows that the charge transfer in our system results in a C radical anion, whose spin polarization maximum is observed at longer times with respect to that of the photogenerated C triplet state. Notably, the theoretical modelling of the EPR spectra reveals that the observed features may be compatible with chirality-induced spin selectivity, but the electronic features of the QD do not allow the unambiguous identification of the CISS effect. Nevertheless, we identify which parameters need optimization for unambiguous detection and quantification of the phenomenon. This work lays the basis for the optical generation and direct manipulation of spin polarization induced by chirality.
据评估,通过手性势垒的电荷传输可导致自旋极化电荷。通过可见光子驱动这一过程的可能性在量子信息科学的多个方面,如量子比特的光学控制和读出,具有巨大潜力。在此背景下,利用自旋敏感光谱直接观测这一现象对于建立未来控制手性结构中光驱动自旋选择性的指导方针至关重要。在这里,我们提供了直接证据,证明时间分辨电子顺磁共振(EPR)可用于检测通过手性桥光诱导电荷转移产生的长寿命自旋极化。我们提出了一个系统,该系统由作为供体的CdSe量子点(QDs)和作为受体的C通过具有约10 Å刚性结构的饱和寡肽螺旋桥(χ)共价连接而成。时间分辨EPR光谱表明,我们系统中的电荷转移产生了一个C自由基阴离子,相对于光生C三重态,其自旋极化最大值在更长时间观察到。值得注意的是,EPR光谱的理论建模表明,观察到的特征可能与手性诱导自旋选择性兼容,但量子点的电子特征不允许明确识别CISS效应。尽管如此,我们确定了明确检测和量化该现象需要优化哪些参数。这项工作为手性诱导自旋极化的光学生成和直接操纵奠定了基础。