Division of Global HIV & TB (DGHT), United States Centers for Disease Control and Prevention (CDC), Kenya, KEMRI Campus, P.O. Box 606, Nairobi, 00621, Kenya.
School of Public Health, Maseno University, Kisumu, Kenya.
AIDS Behav. 2021 Feb;25(2):297-310. doi: 10.1007/s10461-020-02962-7.
To inform targeted HIV testing, we developed and externally validated a risk-score algorithm that incorporated behavioral characteristics. Outpatient data from five health facilities in western Kenya, comprising 19,458 adults ≥ 15 years tested for HIV from September 2017 to May 2018, were included in univariable and multivariable analyses used for algorithm development. Data for 11,330 adults attending one high-volume facility were used for validation. Using the final algorithm, patients were grouped into four risk-score categories: ≤ 9, 10-15, 16-29 and ≥ 30, with increasing HIV prevalence of 0.6% [95% confidence interval (CI) 0.46-0.75], 1.35% (95% CI 0.85-1.84), 2.65% (95% CI 1.8-3.51), and 15.15% (95% CI 9.03-21.27), respectively. The algorithm's discrimination performance was modest, with an area under the receiver-operating-curve of 0.69 (95% CI 0.53-0.84). In settings where universal testing is not feasible, a risk-score algorithm can identify sub-populations with higher HIV-risk to be prioritized for HIV testing.
为了进行有针对性的 HIV 检测,我们开发并外部验证了一种风险评分算法,该算法纳入了行为特征。该算法纳入了 2017 年 9 月至 2018 年 5 月在肯尼亚西部 5 家医疗设施接受 HIV 检测的 19458 名年龄≥15 岁的成年人的门诊数据,用于算法开发的单变量和多变量分析。还纳入了在一个高容量设施就诊的 11330 名成年人的数据,用于验证。使用最终算法,将患者分为四个风险评分类别:≤9、10-15、16-29 和≥30,HIV 患病率分别为 0.6%[95%置信区间(CI)0.46-0.75]、1.35%(95% CI 0.85-1.84)、2.65%(95% CI 1.8-3.51)和 15.15%(95% CI 9.03-21.27)。该算法的区分性能中等,接收器工作曲线下面积为 0.69(95% CI 0.53-0.84)。在普遍检测不可行的情况下,风险评分算法可以识别具有更高 HIV 风险的亚人群,以便优先进行 HIV 检测。