Suppr超能文献

开发并验证了一种基于社会人口学和行为特征的肯尼亚成年人 HIV 检测目标风险评分算法。

Development and Validation of a Sociodemographic and Behavioral Characteristics-Based Risk-Score Algorithm for Targeting HIV Testing Among Adults in Kenya.

机构信息

Division of Global HIV & TB (DGHT), United States Centers for Disease Control and Prevention (CDC), Kenya, KEMRI Campus, P.O. Box 606, Nairobi, 00621, Kenya.

School of Public Health, Maseno University, Kisumu, Kenya.

出版信息

AIDS Behav. 2021 Feb;25(2):297-310. doi: 10.1007/s10461-020-02962-7.

Abstract

To inform targeted HIV testing, we developed and externally validated a risk-score algorithm that incorporated behavioral characteristics. Outpatient data from five health facilities in western Kenya, comprising 19,458 adults ≥ 15 years tested for HIV from September 2017 to May 2018, were included in univariable and multivariable analyses used for algorithm development. Data for 11,330 adults attending one high-volume facility were used for validation. Using the final algorithm, patients were grouped into four risk-score categories: ≤ 9, 10-15, 16-29 and ≥ 30, with increasing HIV prevalence of 0.6% [95% confidence interval (CI) 0.46-0.75], 1.35% (95% CI 0.85-1.84), 2.65% (95% CI 1.8-3.51), and 15.15% (95% CI 9.03-21.27), respectively. The algorithm's discrimination performance was modest, with an area under the receiver-operating-curve of 0.69 (95% CI 0.53-0.84). In settings where universal testing is not feasible, a risk-score algorithm can identify sub-populations with higher HIV-risk to be prioritized for HIV testing.

摘要

为了进行有针对性的 HIV 检测,我们开发并外部验证了一种风险评分算法,该算法纳入了行为特征。该算法纳入了 2017 年 9 月至 2018 年 5 月在肯尼亚西部 5 家医疗设施接受 HIV 检测的 19458 名年龄≥15 岁的成年人的门诊数据,用于算法开发的单变量和多变量分析。还纳入了在一个高容量设施就诊的 11330 名成年人的数据,用于验证。使用最终算法,将患者分为四个风险评分类别:≤9、10-15、16-29 和≥30,HIV 患病率分别为 0.6%[95%置信区间(CI)0.46-0.75]、1.35%(95% CI 0.85-1.84)、2.65%(95% CI 1.8-3.51)和 15.15%(95% CI 9.03-21.27)。该算法的区分性能中等,接收器工作曲线下面积为 0.69(95% CI 0.53-0.84)。在普遍检测不可行的情况下,风险评分算法可以识别具有更高 HIV 风险的亚人群,以便优先进行 HIV 检测。

相似文献

3
HIV testing uptake and prevalence among adolescents and adults in a large home-based HIV testing program in Western Kenya.
J Acquir Immune Defic Syndr. 2014 Feb 1;65(2):e58-66. doi: 10.1097/QAI.0b013e3182a14f9e.

引用本文的文献

1
HIV Risk Score and Prediction Model in the United States: A Scoping Review.
AIDS Behav. 2025 Apr 5. doi: 10.1007/s10461-025-04702-1.
2
Uptake and acceptability of oral HIV self-testing in the context of assisted partner services in Western Kenya: A mixed-methods analysis.
PLOS Glob Public Health. 2024 Nov 15;4(11):e0003960. doi: 10.1371/journal.pgph.0003960. eCollection 2024.
5
Poor handling of continuous predictors in clinical prediction models using logistic regression: a systematic review.
J Clin Epidemiol. 2023 Sep;161:140-151. doi: 10.1016/j.jclinepi.2023.07.017. Epub 2023 Aug 2.
6
Developing HIV risk prediction tools in four African settings.
Trop Med Int Health. 2023 Sep;28(9):720-730. doi: 10.1111/tmi.13916. Epub 2023 Jul 27.
7
Development and validation of a prediction tool to support engagement in HIV care among young people ages 10-24 years in Kenya.
PLoS One. 2023 Jun 30;18(6):e0286240. doi: 10.1371/journal.pone.0286240. eCollection 2023.
8
Development and Evaluation of a Digital HIV Risk Assessment Tool Incorporated Within an App-Based Self-Testing Program.
J Acquir Immune Defic Syndr. 2023 Aug 15;93(5):387-394. doi: 10.1097/QAI.0000000000003210.
9
Performance of HIV Infection Prediction Models in Men Who Have Sex with Men: A Systematic Review and Meta-Analysis.
Arch Sex Behav. 2023 Jul;52(5):2011-2023. doi: 10.1007/s10508-023-02574-x. Epub 2023 Mar 8.
10
Risk-Based Screening Tools to Optimise HIV Testing Services: a Systematic Review.
Curr HIV/AIDS Rep. 2022 Apr;19(2):154-165. doi: 10.1007/s11904-022-00601-5. Epub 2022 Feb 11.

本文引用的文献

1
Expanded eligibility for HIV testing increases HIV diagnoses-A cross-sectional study in seven health facilities in western Kenya.
PLoS One. 2019 Dec 27;14(12):e0225877. doi: 10.1371/journal.pone.0225877. eCollection 2019.
2
Methodological standards for the development and evaluation of clinical prediction rules: a review of the literature.
Diagn Progn Res. 2019 Aug 22;3:16. doi: 10.1186/s41512-019-0060-y. eCollection 2019.
3
Sample size for binary logistic prediction models: Beyond events per variable criteria.
Stat Methods Med Res. 2019 Aug;28(8):2455-2474. doi: 10.1177/0962280218784726. Epub 2018 Jul 3.
5
No rationale for 1 variable per 10 events criterion for binary logistic regression analysis.
BMC Med Res Methodol. 2016 Nov 24;16(1):163. doi: 10.1186/s12874-016-0267-3.
6
Treatment as Prevention: Characterization of Partner Infections in the HIV Prevention Trials Network 052 Trial.
J Acquir Immune Defic Syndr. 2017 Jan 1;74(1):112-116. doi: 10.1097/QAI.0000000000001158.
7
Antiretroviral Therapy for the Prevention of HIV-1 Transmission.
N Engl J Med. 2016 Sep 1;375(9):830-9. doi: 10.1056/NEJMoa1600693. Epub 2016 Jul 18.
10
A Trial of Early Antiretrovirals and Isoniazid Preventive Therapy in Africa.
N Engl J Med. 2015 Aug 27;373(9):808-22. doi: 10.1056/NEJMoa1507198. Epub 2015 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验