School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China.
School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China.
Water Res. 2020 Sep 15;183:116115. doi: 10.1016/j.watres.2020.116115. Epub 2020 Jul 1.
The ultraviolet/chlorine (UV/Cl) process is an emerging advanced oxidation technology for micropollutant abatement in water and wastewater treatment. However, the application of the conventional UV/Cl process in decentralized systems is limited by the transport and management of liquid chlorine. To overcome this limitation, this study evaluated an electrochemically driven UV/Cl (E-UV/Cl) process for micropollutant abatement under conditions simulating decentralized water treatment. The E-UV/Cl process combines UV irradiation with in situ electrochemical Cl production from anodic oxidation of chloride (Cl) in source waters. The results show that with typical Cl concentrations present in water sources for decentralized systems (30-300 mg/L Cl), sufficient amounts of chlorine could be quickly electrochemically produced at the anode to enable E-UV/Cl process for water treatment. Due to its multiple mechanisms for micropollutant abatement (direct photolysis, direct electrolysis, Cl-mediated oxidation, as well as hydroxyl radical and reactive chlorine species oxidation), the E-UV/Cl process effectively eliminated all micropollutants (trimethoprim, ciprofloxacin, metoprolol, and carbamazepine) spiked in a surface water in 5 min. In contrast, at least one micropollutant with ∼20-80% residual concentrations could still be detected in the water treated by 10 min of UV irradiation, chlorination, electrolysis, and the conventional UV/Cl process under similar experimental conditions. The electrical energy per order (E) for micropollutant abatement ranged from 0.15 to 1.8 kWh/m for the E-UV/Cl process, which is generally comparable to that for the conventional UV/Cl process (0.14-2.7 kWh/m). These results suggest that by in-situ generating Cl from anodic oxidation of Cl, the E-UV/Cl process can overcome the barrier of the conventional UV/Cl process and thus provide a promising technology for micropollutant abatement in decentralized water treatment systems.
紫外线/氯(UV/Cl)工艺是一种新兴的高级氧化技术,可用于水中和废水处理中的微污染物去除。然而,由于液氯的运输和管理问题,常规 UV/Cl 工艺在分散式系统中的应用受到限制。为了克服这一限制,本研究评估了一种电化学驱动的 UV/Cl(E-UV/Cl)工艺,用于模拟分散式水处理条件下的微污染物去除。E-UV/Cl 工艺结合了 UV 照射和原位电化学 Cl 生成,通过源水中的氯离子(Cl)阳极氧化来实现。结果表明,在典型的分散式系统水源中 Cl 浓度(30-300mg/L Cl)下,阳极可以快速电化学产生足够量的 Cl,从而实现 E-UV/Cl 工艺用于水处理。由于其具有多种微污染物去除机制(直接光解、直接电解、Cl 介导氧化以及羟基自由基和活性氯物种氧化),E-UV/Cl 工艺可在 5min 内有效去除地表水投加的所有微污染物(甲氧苄啶、环丙沙星、美托洛尔和卡马西平)。相比之下,在类似的实验条件下,通过 10min 的 UV 照射、氯化、电解和常规 UV/Cl 工艺处理的水中,仍能检测到至少一种微污染物,其残留浓度为 20-80%。E-UV/Cl 工艺的微污染物去除单位能耗(E)范围为 0.15-1.8kWh/m,与常规 UV/Cl 工艺(0.14-2.7kWh/m)相当。这些结果表明,通过阳极氧化 Cl 原位生成 Cl,E-UV/Cl 工艺可以克服常规 UV/Cl 工艺的障碍,从而为分散式水处理系统中的微污染物去除提供了一种有前景的技术。