Department of Electronics and Communication Engineering, Faculty of KL University, Guntur, India.
Sri Mittapalli College of Engineering, Guntur, India.
Curr Med Imaging. 2021;17(3):331-341. doi: 10.2174/1573405616666200712180521.
Early diagnosis of a brain tumor may increase life expectancy. Magnetic resonance imaging (MRI) accompanied by several segmentation algorithms is preferred as a reliable method for assessment. The availability of high-dimensional medical image data during diagnosis places a heavy computational burden and a suitable pre-processing step is required for lower- dimensional representation. The storage requirement and complexity of image data are also a concern. To address this concern, the random projection technique (RPT) is widely used as a multivariate approach for data reduction.
This study mainly focuses on T1-weighted MRI image clustering for brain tumor segmentation with dimension reduction by using the conventional principal component analysis (PCA) and RPT.
Two clustering algorithms, K-means and fuzzy c-means (FCM) were used for brain tumor detection. The primary study objective was to present a comparison of the two clustering methods between MRI images subjected to PCA and RPT. In addition to the original dimension of 512 × 512, three other image sizes, 256 × 256, 128 × 128, and 64 × 64, were used to determine the effect of the methods.
In terms of average reconstruction, Euclidean distance, and segmentation distance errors, the RPT produced better results than the PCA method for all the clustered images from clustering techniques.
According to the values of performance metrics, RPT supported fuzzy c-means in achieving the best clustering performance and provided significant results for each new size of the MRI images.
早期诊断脑瘤可以延长患者的预期寿命。磁共振成像(MRI)结合多种分割算法是评估的可靠方法。在诊断过程中,高维医疗图像数据的可用性会带来巨大的计算负担,因此需要采用合适的预处理步骤来实现降维。此外,还需要考虑到图像数据的存储需求和复杂性。为了解决这个问题,随机投影技术(RPT)被广泛应用于多维数据降维。
本研究主要关注于使用传统主成分分析(PCA)和随机投影技术(RPT)进行 T1 加权 MRI 图像聚类,以实现脑瘤分割的降维。
采用 K-means 和模糊 C 均值(FCM)两种聚类算法进行脑瘤检测。主要研究目标是比较 PCA 和 RPT 处理后的 MRI 图像的两种聚类方法。除了原始的 512×512 维度外,我们还使用了另外三个图像尺寸,即 256×256、128×128 和 64×64,以确定方法的效果。
就平均重建、欧几里得距离和分割距离误差而言,对于聚类技术得到的所有聚类图像,RPT 的结果均优于 PCA 方法。
根据性能指标的值,RPT 支持模糊 C 均值实现了最佳聚类性能,并为 MRI 图像的每个新尺寸提供了显著的结果。