Khosravanian Asieh, Rahmanimanesh Mohammad, Keshavarzi Parviz, Mozaffari Saeed
Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.
Comput Methods Programs Biomed. 2021 Jan;198:105809. doi: 10.1016/j.cmpb.2020.105809. Epub 2020 Oct 16.
Brain tumor segmentation is a challenging issue due to noise, artifact, and intensity non-uniformity in magnetic resonance images (MRI). Manual MRI segmentation is a very tedious, time-consuming, and user-dependent task. This paper aims to presents a novel level set method to address aforementioned challenges for reliable and automatic brain tumor segmentation.
In the proposed method, a new functional, based on level set method, is presented for medical image segmentation. Firstly, we define a superpixel fuzzy clustering objective function. To create superpixel regions, multiscale morphological gradient reconstruction (MMGR) operation is used. Secondly, a novel fuzzy energy functional is defined based on superpixel segmentation and histogram computation. Then, level set equations are obtained by using gradient descent method. Finally, we solve the level set equations by using lattice Boltzmann method (LBM). To evaluate the performance of the proposed method, both synthetic image dataset and real Glioma brain tumor images from BraTS 2017 dataset are used.
Experiments indicate that our proposed method is robust to noise, initialization, and intensity non-uniformity. Moreover, it is faster and more accurate than other state-of-the-art segmentation methods with the averages of running time is 3.25 seconds, Dice and Jaccard coefficients for automatic tumor segmentation against ground truth are 0.93 and 0.87, respectively. The mean value of Hausdorff distance, Mean absolute Distance (MAD), accuracy, sensitivity, and specificity are 2.70, 0.005, 0.9940, 0.9183, and 0.9972, respectively.
Our proposed method shows satisfactory results for Glioma brain tumor segmentation due to superpixel fuzzy clustering accurate segmentation results. Moreover, our method is fast and robust to noise, initialization, and intensity non-uniformity. Since most of the medical images suffer from these problems, the proposed method can more effective for complicated medical image segmentation.
由于磁共振图像(MRI)中的噪声、伪影和强度不均匀性,脑肿瘤分割是一个具有挑战性的问题。手动进行MRI分割是一项非常繁琐、耗时且依赖用户的任务。本文旨在提出一种新颖的水平集方法,以应对上述挑战,实现可靠且自动的脑肿瘤分割。
在所提出的方法中,提出了一种基于水平集方法的新功能用于医学图像分割。首先,定义一个超像素模糊聚类目标函数。为创建超像素区域,使用多尺度形态梯度重建(MMGR)操作。其次,基于超像素分割和直方图计算定义一个新颖的模糊能量函数。然后,通过梯度下降法获得水平集方程。最后,使用格子玻尔兹曼方法(LBM)求解水平集方程。为评估所提出方法的性能,使用了合成图像数据集和来自BraTS 2017数据集的真实胶质瘤脑肿瘤图像。
实验表明,我们提出的方法对噪声、初始化和强度不均匀性具有鲁棒性。此外,它比其他现有最先进的分割方法更快、更准确,运行时间平均为3.25秒,自动肿瘤分割与真实情况的骰子系数和杰卡德系数分别为0.93和0.87。豪斯多夫距离、平均绝对距离(MAD)、准确率、灵敏度和特异性的平均值分别为2.70、0.005、0.9940、0.9183和0.9972。
由于超像素模糊聚类的准确分割结果,我们提出的方法在胶质瘤脑肿瘤分割中显示出令人满意的结果。此外,我们的方法快速且对噪声、初始化和强度不均匀性具有鲁棒性。由于大多数医学图像都存在这些问题,所提出的方法对于复杂的医学图像分割可能更有效。